Our previous study demonstrated that the Korean traditional medicine Gyeongshingangjeehwan (GGEx) activates AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) critical for fatty acid oxidation in skeletal muscle and C2C12 skeletal muscle cells. Thus, we examined whether GGEx can reduce lipid accumulation in these cells and tissues. After obese and type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats were treated with GGEx, we studied the effects of GGEx on skeletal muscle lipid accumulation. The effects of GGEx and/or the AMPK inhibitor compound C on lipid accumulation and expression of AMPK and $PPAR{\alpha}$ were measured in C2C12 skeletal muscle cells. Compared with lean Long-Evans Tokushima Otsuka rats, obese OLETF rats had increased triglyceride droplets. However, administration of GGEx to OLETF rats for 8 weeks significantly decreased triglyceride droplets in skeletal muscle. Consistent with the $in$$vivo$ data, GGEx inhibited lipid accumulation, the degree of which was comparable to Wy14,643, the potent activator of $PPAR{\alpha}$. GGEx also increased skeletal muscle mRNA levels of AMPK${\alpha}1$, AMPK${\alpha}2$, and $PPAR{\alpha}$. However, compound C inhibited these effects in C2C12 cells. These results suggest that GGEx suppresses skeletal muscle lipid accumulation and this process may be mediated by AMPK and $PPAR{\alpha}$ activation.
The purpose of this study was to evaluate the changes in skeletal muscle architecture and qualitative properties by muscle contraction force when neuromuscular electrical stimulation (NMES) of 50% MVIC was applied. Sixteen subjects (8 male, 8 female) without neuromuscular disease volunteered to participate in the study. All subjects were divided into two subgroups: control (no electrical stimulation) group and 50% maximal voluntary isometric contraction (MVIC) group. NMES training program was performed in the calf muscle three times a week for 10 weeks. Before and after the experiments, the MVIC of ankle plantar flexor was measured by the use of dynamometer, and the ultrasonography in the gastrocnemius medialis muscle was measured. The following results were obtained; MVIC was significantly increased in the electrical stimulation groups. Pennation angle, muscle density, and white area index also considerably changed in the electrical stimulation groups. In conclusion, the NMES training of 50% MVIC, comparative low level, improved the skeletal muscle architecture and the qualitative properties as well as the muscle contraction force.
Kwak, Seong Eun;Shin, Hyung Eun;Zhang, Di Di;Lee, Jihyun;Yoon, Kyung Jin;Bae, Jun Hyun;Moon, Hyo Youl;Song, Wook
Korean Journal of Exercise Nutrition
/
v.23
no.2
/
pp.28-33
/
2019
[Purpose] Recent studies have shown that glucose-6-phosphate isomerase (GPI)-which is a glycolysis interconversion enzyme-reduces oxidative stress. However, these studies are limited to tumors such as fibrosarcoma, and there are no studies that have examined the effects of exercise on GPI expression in mice skeletal muscle. Furthermore, GPI acts in an autocrine manner thorough its receptor, autocrine motility factor receptor (AMFR); therefore, we investigated expression level changes of secreted GPI from skeletal muscle in in vitro study to examine the potential role of GPI on skeletal muscle. [Methods] First, we performed an in vitro study, to identify the condition that upregulates GPI levels in skeletal muscle cells; we treated C2C12 muscle cells with an exercise-mimicking chemical, AICAR. AICAR treatment upregulated GPI expression level in C2C12 cell and its secretomes. To confirm the direct effect of GPI on skeletal muscle cells, we treated C2C12 cells with GPI recombinant protein. [Results] We found that GPI improved the viability of C2C12 cells. In the in vivo study, the exercise-treated mice group showed upregulated GPI expression in skeletal muscle. Based on the in vitro study results, we speculated that expression level of GPI in skeletal muscle might be associated with muscle function. We analyzed the association between GPI expression level and the grip strength of the all mice group. The mice group's grip strengths were upregulated after 2 weeks of treadmill exercise, and GPI expression level positively correlated with the grip strength. [Conclusion] These results suggested that the exercise-induced GPI expression in skeletal muscle might have a positive effect on skeletal muscle function.
Our previous study demonstrated that the Korean traditional medicine Gyeongshingangjeehwan (GGEx) inhibits obesity and insulin resistance in obese type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. We investigated whether GGEx may affect AMP-activated protein kinase ${\alpha}$ ($AMPK{\alpha}$) since $AMPK{\alpha}$ activation is known to stimulate fatty acid oxidation in skeletal muscle of obese rodents. After OLETF rats were treated with GGEx, we studied the effects of GGEx on $AMPK{\alpha}$ and acetyl-CoA carboxylase (ACC) phosphorylation, and the expression of $AMPK{\alpha}$, $PPAR{\alpha}$, and $PPAR{\alpha}$ target genes. The effects of GGEx on mRNA expression of the above genes were also measured in C2C12 skeletal muscle cells. Administration of GGEx to OLETF rats for 8 weeks increased phosphorylation of $AMPK{\alpha}$ and ACC in skeletal muscle. GGEx also elevated skeletal muscle mRNA levels of $AMPK{\alpha}1$ and $AMPK{\alpha}2$ as well as $PPAR{\alpha}$ and its target genes. Consistent with the in vivo data, similar activation of genes was observed in GGEx-treated C2C12 cells. These results suggest that GGEx stimulates skeletal muscle $AMPK{\alpha}$ and $PPAR{\alpha}$ activation, leading to alleviation of obesity and related disorders.
Chronic alcoholic myopathy is one of the most common skeletal muscle disorders. It is characterized by a reduction in the entire skeletal musculature, skeletal muscle weakness, and difficulties in gait. Patients with alcoholic hepatitis and cirrhosis have severe muscle loss that contributes to worsening outcome. Although the myopathy selectively affects Type II (fast twitch, glycolytic, anaerobic) skeletal muscle fibers, total skeletal musculature is reduced. The severity of the muscle atrophy is proportional to the duration and amount of alcohol consumed and leads to decreased muscle strength. The mechanisms for the myopathy are generally unknown but it is not due to overt nutritional deficiency, nor due to either neuropathy or severe liver disease. Skeletal muscle mass and protein content are maintained by a balance between protein synthesis and breakdown and in vivo animal models studies have shown that ethanol inhibits skeletal muscle protein synthesis. Daekumeumja is a traditional Korean medicine that is widely employed to treat various alcohol-induced diseases. Muscle diseases are often related to liver diseases and conditions. The main objective of this study was to assess that Daekumeumja extract could have protective effect against alcoholic myopathy in a Sprague-Dawley rat model. Rats were orally given 25% ethanol (5ml/kg, body weight) for 8 weeks. After 30 minutes, rats were administrated with Daekumeumja extract. Controls were similarly administrated with the vehicle alone. The weights of gastrocnemius, soleus and plantaris muscles were assessed and the morphologic changes of gastrocnemius and plantaris muscles were also assessed by hematoxylin and eosin staining. In results, The muscles from ethanol treated rats displayed a significant reduction in muscle weight and average cross section area compared to Normal group. Daekumeumja extract treated group showed increased muscle weight and muscle fiber compared to the ethanol treated group. It was concluded that Daekumeumja extract showed ameliorating effects on chronic alcohol myopathy in skeletal muscle.
Background: The ginsenoside Rg1 has been shown to exert various pharmacological activities with health benefits. Previously, we have reported that Rg1 promoted myogenic differentiation and myotube growth in C2C12 myoblasts. In this study, the in vivo effect of Rg1 on fiber-type composition and oxidative metabolism in skeletal muscle was examined. Methods: To examine the effect of Rg1 on skeletal muscle, 3-month-old mice were treated with Rg1 for 5 weeks. To assess muscle strength, grip strength tests were performed, and the lower hind limb muscles were harvested, followed by various detailed analysis, such as histological staining, immunoblotting, immunostaining, and real-time quantitative reverse transcription polymerase chain reaction. In addition, to verify the in vivo data, primary myoblasts isolated from mice were treated with Rg1, and the Rg1 effect on myotube growth was examined by immunoblotting and immunostaining analysis. Results: Rg1 treatment increased the expression of myosin heavy chain isoforms characteristic for both oxidative and glycolytic muscle fibers; increased myofiber sizes were accompanied by enhanced muscle strength. Rg1 treatment also enhanced oxidative muscle metabolism with elevated oxidative phosphorylation proteins. Furthermore, Rg1-treated muscles exhibited increased levels of anabolic S6 kinase signaling. Conclusion: Rg1 improves muscle functionality via enhancing muscle gene expression and oxidative muscle metabolism in mice.
Sumin Lee;Yoonha Choi;Yerin Kim;Yeon Kyung Cha;Tai Hyun Park;Yuri Kim
Nutrition Research and Practice
/
v.18
no.4
/
pp.451-463
/
2024
BACKGROUND/OBJECTIVES: The umami taste receptor (TAS1R1/TAS1R3) is endogenously expressed in skeletal muscle and is involved in myogenesis; however, there is a lack of evidence about whether the expression of the umami taste receptor is involved in muscular diseases. This study aimed to elucidate the effects of the umami taste receptor and its mechanism on muscle wasting in cancer cachexia using in vivo and in vitro models. MATERIALS/METHODS: The Lewis lung carcinoma-induced cancer cachexia model was used in vivo and in vitro, and the expressions of umami taste receptor and muscle atrophy-related markers, muscle atrophy F-box protein, and muscle RING-finger protein-1 were analyzed. RESULTS: Results showed that TAS1R1 was significantly downregulated in vivo and in vitro under the muscle wasting condition. Moreover, overexpression of TAS1R1 in vitro in the human primary cell model protected the cells from muscle atrophy, and knockdown of TAS1R1 using siRNA exacerbated muscle atrophy. CONCLUSION: Taken together, the umami taste receptor exerts protective effects on muscle-wasting conditions by restoring dysregulated muscle atrophy in cancer cachexia. In conclusion, this result provided evidence that the umami taste receptor exerts a therapeutic anti-cancer cachexia effect by restoring muscle atrophy.
The in vivo and in vitro buffer capacities of true plasma and tissue buffer capaciies were compared on dogs. Intracellular pH was determined on skeletal muscle by a modification of the method of Schloerb and Grantham using $C^{14}$ DMO. The in vivo curve for plasma or extracellular fluid has a much lower slope than the in vitro curve. The in vivo slope of skeletal muscle in the dog is approximately 20 sl. The slope for skeletal muscle in vivo falls between the in vitro and in vivo slopes of true plasma. It appears that intracellular hydrogen ion varies linearly with extracellular hydrogen ion when $CO_2$ tension is changed. Both hydrogen ion gradient and Hi/He ratio vary in skeletal muscle, with an increase in $CO_2$ tension. Infusion of 0.3N HCl gave two distinct patterns, the $H_i-H_e$ gradient decreased; and it would appear that very little hydrogen ion as such penetrated to the inside of the cells during the time of observation. Although lactic acid presumably enters the cell and the same of larger load was given as was used for hydrochloric acid, only very mild intracellular acidosis resulted, ostensibly due to metabolism of this substrate. Gluconic acid produced a more severe acidosis, both intracellularly and extracellularly, but with both of these acids the hydrogen ion gradient decreased and the $H_i/H_e$ ratio also decreased. The experiments on the dogs with hemorrhagic shock the hydrogen ion increase producing the acidosis originates inside the cells. Even so, the hydrogen ion gradient increased only very slightly in the acute experiments. This may suggest that even over short intervals of time skeletal muscle cells have a capacity to pump out hydrogen ions at a rate which maintains approximately the normal $H_i/H_e$ gradient when the source of the hydrogen ion is in the interior of the cell.
[Purpose] In vivo studies have demonstrated the ergogenic benefits of eleutherococcus senticosus (ES) supplementation. ES has been observed to enhance endurance capacity, improve cardiovascular function, and alter metabolic functions (e.g., increased fat utilization); however, the exact mechanisms involved remain unknown. We aimed to determine whether ES could effectively induce fat loss and improve muscle metabolic profiles through increases in lipolysis- and lipid metabolism-associated protein expression in 3T3-L1 adipocytes and C2C12 skeletal muscle cells, respectively, to uncover the direct effects of ES on adipocytes and skeletal muscle cells. [Methods] Different doses of ES extracts (0.2, 0.5, and 1.0 mg/mL) were added to cells (0.2 ES, 0.5 ES, and 1.0 ES, respectively) for 72 h and compared to the vehicle control (control). [Results] The intracellular triacylglycerol (TG) content significantly decreased (p < 0.05 for 0.2 ES, p < 0.01 for 0.5 ES and 1.0 ES) in 3T3-L1 cells. Adipose triglyceride lipase, which is involved in active lipolysis, was significantly higher in the 1.0 ES group than in the control group (p < 0.01) of 3T3-L1 adipocytes. In C2C12 cells, the mitochondrial protein voltage-dependent anion channel (VDAC) was significantly increased in the 1.0 ES group (p < 0.01). Furthermore, we found that 1.0 ES activated both 5' AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in skeletal muscle cells (p < 0.01). [Conclusion] These findings suggest that ES extracts decreased TG content, presumably by increasing lipase in adipocytes and metabolism-associated protein expression as well as mitochondrial biogenesis in muscle cells. These effects may corroborate previous in vivo findings regarding the ergogenic effects of ES supplementation.
Kim, Tae Jin;Pyun, Do Hyeon;Kim, Myeong Jun;Jeong, Ji Hoon;Abd El-Aty, A.M.;Jung, Tae Woo
Journal of Ginseng Research
/
v.46
no.3
/
pp.444-453
/
2022
Background: Compound K (CK) is among the protopanaxadiol (PPD)-type ginsenoside group, which produces multiple pharmacological effects. Herein, we examined the effects of CK on muscle atrophy under hyperlipidemic conditions along with its pro-myogenic effects. Further, the molecular pathways underlying the effects of CK on skeletal muscle have been justified. Methods: C2C12 myotubes were treated with palmitate and CK. C2C12 myoblasts were differentiated using CK for 4-5 days. For the in vivo experiments, CK was administered to mice fed on a high-fat diet for 8 weeks. The protein expression levels were analyzed using western blotting analysis. Target protein suppression was performed using small interfering (si) RNA transfection. Histological examination was performed using Jenner-Giemsa and H&E staining techniques. Results: CK treatment attenuated ER stress markers, such as eIF2a phosphorylation and CHOP expression and impaired myotube formation in palmitate-treated C2C12 myotubes and skeletal muscle of mice fed on HFD. CK treatment augmented AMPK along with autophagy markers in skeletal muscle cells in vitro and in vivo experiments. AMPK siRNA or 3-MA, an autophagy inhibitor, abrogated the impacts of CK in C2C12 myotubes. CK treatment augmented p38 and Akt phosphorylation, leading to an enhancement of C2C12 myogenesis. However, AMPK siRNA abolished the effects of CK in C2C12 myoblasts. Conclusion: These findings denote that CK prevents lipid-induced skeletal muscle apoptosis via AMPK/autophagy-mediated attenuation of ER stress and induction of myoblast differentiation. Therefore, we may suggest the use of CK as a potential therapeutic approach for treating muscle-wasting conditions associated with obesity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.