• Title/Summary/Keyword: IMM method

Search Result 165, Processing Time 0.022 seconds

Neighboring Vehicle Maneuver Detection using IMM Algorithm for ADAS (지능형 운전보조시스템을 위한 IMM 기법을 이용한 전방차량 거동추정기법)

  • Jung, Sun-Hwi;Lee, Woon-Sung;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.718-724
    • /
    • 2013
  • In today's automotive industry, there exist several systems that help drivers reduce the possibility of accidents, such as the ADAS (Advanced Driver Assistance System). The ADAS helps drivers make correct and quick decisions during dangerous situations. This study analyzed the performance of the IMM (Interacting Multiple Model) method based on multiple Kalman filters using the data acquired from a driving simulator. An IMM algorithm is developed to identify the current discrete state of neighboring vehicles using the sensor data and the vehicle dynamics. In particular, the driving modes of the neighboring vehicles are classified by the cruising and maneuvering modes, and the transition between the states is modeled using a Markovian switching coefficient. The performance of the IMM algorithm is analyzed through realistic simulations where a target vehicle executes sudden lane change or acceleration maneuver.

Maneuvering Target Tracking Using Error Monitoring

  • Fang, Tae-Hyun;Park, Jae-Weon;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.329-334
    • /
    • 1998
  • This work is concerned with the problem of tracking a maneuvering target. In this paper, an error monitoring and recovery method of perception net is utilized to improve tracking performance for a highly maneuvering tar-get. Many researches have been performed in tracking a maneuvering target. The conventional Interacting Multiple Model (IMM) filter is well known as a suboptimal hybrid filter that has been shown to be one of the most cost-effective hybrid state estimation scheme. The subfilters of IMM can be considered as fusing its initial value with new measurements. This approach is also shown in this paper. Perception net based error monitoring and recovery technique, which is a kind of geometric data fusion, makes it possible to monitor errors and to calibrate possible biases involved in sensed data and extracted features. Both detecting a maneuvering target and compensating the estimated state can be achieved by employing the properly implemented error monitoring and recovery technique. The IMM filter which employing the error monitoring and recovery technique shows good tracking performance for a highly maneuvering target as well as it reduces maximum values of estimation errors when maneuvering starts and finishes. The effectiveness of the pro-posed method is validated through simulation by comparing it with the conventional IMM algorithm.

  • PDF

A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors (레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구)

  • Jang, Sung-woo;Kang, Yeon-sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.

IMM Algorithm with NPHMM for Speech Enhancement (음성 향상을 위한 NPHMM을 갖는 IMM 알고리즘)

  • Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.53-66
    • /
    • 2004
  • The nonlinear speech enhancement method with interactive parallel-extended Kalman filter is applied to speech contaminated by additive white noise. To represent the nonlinear and nonstationary nature of speech. we assume that speech is the output of a nonlinear prediction HMM (NPHMM) combining both neural network and HMM. The NPHMM is a nonlinear autoregressive process whose time-varying parameters are controlled by a hidden Markov chain. The simulation results shows that the proposed method offers better performance gains relative to the previous results [6] with slightly increased complexity.

  • PDF

Performance Analysis on the IMM-PDAF Method for Longitudinal and Lateral Maneuver Detection using Automotive Radar Measurements (차량용 레이더센서를 이용한 IMM-PDAF 기반 종-횡방향 운동상태 검출 및 추정기법에 대한 성능분석)

  • Yoo, Jeongjae;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.224-232
    • /
    • 2015
  • In order to develop an active safety system which avoids or mitigates collisions with preceding vehicles such as autonomous emergency braking (AEB), accurate state estimation of the nearby vehicles is very important. In this paper, an algorithm is proposed using 3 dynamic models to better estimate the state of a vehicle which has various dynamic patterns in both longitudinal and lateral direction. In particular, the proposed algorithm is based on the Interacting Multiple Model (IMM) method which employs three different dynamic models, in cruise mode, lateral maneuver mode and longitudinal maneuver mode. In addition, a Probabilistic Data Association Filter (PDAF) is utilized as a data association algorithm which can improve the reliability of the measurement under a clutter environment. In order to verify the performance of the proposed method, it is simulated in comparison with a Kalman filter method which employs a single dynamic model. Finally, the proposed method is validated using radar data obtained from the field test in the proving ground.

Prediction of Centerlane Violation for vehicle in opposite direction using Fuzzy Logic and Interacting Multiple Model (퍼지 논리와 Interacting Multiple Model (IMM)을 통한 잡음환경에서의 맞은편 차량의 중앙선 침범 예측)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyen;Lee, Heejin;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • For intelligent vehicle technology, it is very important to recognize the states of around vehicles and assess the collision risk for safety driving of the vehicle. Specifically, it is very fatal the collision with the vehicle coming from opposite direction. In this paper, a centerlane violation prediction method is proposed. Only radar signal based prediction makes lots of false alarm cause of measurement noise and the false alarm can make more danger situation than the non-prediction situation. We proposed the novel prediction method using IMM algorithm and fuzzy logic to increase accuracy and get rid of false positive. Fuzzy logic adjusts the radar signal and the IMM algorithm appropriately. It is verified by the computer simulation that shows stable prediction result and fewer number of false alarm.

Robust Filtering Algorithm for Improvement of Air Navigation System (항행시스템 성능향상을 위한 강인한 필터링 알고리즘)

  • Cho, Taehwan;Kim, Jinhyuk;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2015
  • Among various fields of the CNS/ATM, the surveillance field which includes ADS-B system, MLAT system, and WAM system is implemented. These next generation systems provide superior performance in tracking aircrafts. However, They still have error. In this paper, filtering algorithm is proposed in order to enhance aircraft tracking performance of ADS-B, MLAT, and WAM systems. The proposed method is a Robust Interacting Multiple Model filter, called Robust IMM filter, that improves IMM filter. The Robust IMM filter can not only improves the aircraft tracking performance but also track aircraft continually using estimates calculated from the filter when data losses occur. The simulation results of the proposed aircraft tracking methods show that the filtering data provides a better performance up to an average of 19.21%.

Incorporation of IMM-based Feature Compensation and Uncertainty Decoding (IMM 기반 특징 보상 기법과 불확실성 디코딩의 결합)

  • Kang, Shin-Jae;Han, Chang-Woo;Kwon, Ki-Soo;Kim, Nam-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.492-496
    • /
    • 2012
  • This paper presents a decoding technique for speech recognition using uncertainty information from feature compensation method to improve the speech recognition performance in the low SNR condition. Traditional feature compensation algorithms have difficulty in estimating clean feature parameters in adverse environment. Those algorithms focus on the point estimation of desired features. The point estimation of feature compensation method degrades speech recognition performance when incorrectly estimated features enter into the decoder of speech recognition. In this paper, we apply the uncertainty information from well-known feature compensation method, such as IMM, to the recognition engine. Applied technique shows better performance in the Aurora-2 DB.

The Performance Enhancement of Automatic Dependent Surveillance - Broadcast Using Information Fusion Method (정보융합 기법을 활용한 ADS-B 성능 개선)

  • Cho, Taehwan;Kim, Kanghee;Kim, inhyuk;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.345-353
    • /
    • 2015
  • In this paper, we proposed an information fusion method for enhancement of automatic dependent surveillance - broadcast (ADS-B) system which is one of the next generation navigation system. Although ADS-B provides better performance than traditional radar, ADS-B still has error due to dependence of global navigation satellite system (GNSS) information. In this paper, we improved the ADS-B performance using information fusion of multilateration (MLAT) and wide area multilateration (WAM). Information fusion provides accurate data compared to original data. Mostly, information fusion methods use Kalman filter or IMM(interacting multiple model) filter as a subfilter. However, we used Robust IMM filter as a subfilter to improve the aircraft tracking performance. Also, we use actual ADS-B data not virtual data to increase reliability of our information fusion method.

Dynamic Determination of IMM Mode Transition Probability for Multi-Radar Tracking (다중 레이더 추적을 위한 IMM 모드 천이 확률의 동적 결정)

  • Jeon, Dae-Keun;Eun, Yeon-Ju;Ko, Hyun;Yeom, Chan-Hong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • A method is presented of dynamic determination of mode transition probability for IMM in order to improve the accuracy performance of maneuvering target tracking for air traffic control surveillance processing system under multiple radar environment. It is shown that dynamic determination of mode transition probability based on the time intervals between the data input from multiple radars gives the optimized performance in terms of position estimation accuracy.