본 논문은 골프 스윙 자세 학습자를 위하여 골프 스윙의 참조 모델인 3D 모델과 학습자의 골프 스윙을 촬영한 동영상을 대상으로 스윙 동작 시 각각의 위치 및 시간에서 각 동작을 정밀하게 비교 분석하기 위해 3D 모델의 골프 스윙 동작과 학습자의 스윙 동작을 동기화 시키는 방법을 제안하고 구현한 결과를 제시한다. 3D 모델과 학습자의 스윙 동영상을 동기화시켜 재생하기 위해서 먼저 학습자의 골프 스윙 동영상을 촬영하고, 촬영한 동영상으로부터 어드레스 자세부터 피니쉬 자세까지 골프 클럽의 위치에 따라 상대적 시간 정보를 추출한다. 고품질 모션 캡쳐 장비를 통해 초당 120프레임으로 캡처된 골프 전문가의 움직임 정보를 3D 모델에 리깅한 3D 참조 모델에 학습자 스윙 동영상으로부터 추출한 골프 클럽의 위치별 시간 정보를 적용하여 3D 참조 모델과 학습자의 스윙 동영상을 동기화시켜 재생함으로 학습자는 골프 스윙의 각 위치에서 참조 모델과 자신의 자세를 정밀하게 비교함으로 자세를 교정하거나 학습할 수 있다. 동기화된 재생을 통하여 기존의 수동적으로 위치를 조정하며 참조 모델과 학습자의 스윙을 비교 분석하는 시스템의 기능을 편리하게 사용할 수 있도록 개선할 수 있으며, 골프 자세의 각 위치를 검출하는 영상 처리 기술을 적용한 부분을 제외하고, 동기화시키기 위해 동영상에서 자동적으로 각 위치의 시간 정보를 추출하여 동기화시켜 재생하는 방법은 일반적인 생활 스포츠 분야로 확대하여 활용할 수 있을 것으로 기대한다.
고해상도(Very High Resolution; VHR) 위성영상을 이용한 재난 피해 평가는 신속한 피해 정보 추출과 함께 세부적인 피해 정보 획득이 가능하다. 하지만 일반적으로 VHR 위성의 낮은 영상 취득 주기로 인해 재난 발생 전 VHR 영상의 수급은 제한적이며, 재난 발생 후 영상만으로는 피해 지역과 미피해 지역의 정확한 식별에 한계가 존재한다. 이에 본 연구에서는 산불 발생 후 VHR 위성영상과 GIS (Geographic Information System) 데이터를 이용하여 국내 산불 피해 지역에 대한 변화 탐지를 수행하였다. 산불 발생 전 VHR 영상을 대체하기 위한 GIS 데이터로는 토지피복도가 사용되었으며, 산불 발생 전 토지피복 현황에 대한 공간정보를 이용하여 산불발생 전 NIR (near-infrared) 영상을 시뮬레이션하였다. 변화 탐지 과정에서는 NDVI (Normalized Difference Vegetation Index) 상관도 기반의 변화 탐지 기법을 적용하였으며, superpixel 기반의 영상 분석을 통해 영상 분석의 복잡도를 감소시키는 동시에 VHR 영상의 디테일을 보존하고자 하였다. 제안 기법은 2019년 발생한 강원도 산불 지역에 대해 검증되었으며, 두 연구 지역에 대해 모두 98% 이상의 높은 전체 정확도와 0.97 이상의 높은 F1-score 값을 제시하였다.
컨포멀 코팅은 PCB(Printed Circuit Board)를 보호하는 기술로 PCB의 고장을 최소화한다. 코팅의 결함은 PCB의 고장과 연결되기 때문에 성공적인 컨포멀 코팅 조건을 만족하기 위해서 코팅면에 기포가 발생했는지 검사한다. 본 논문에서는 영상 신호 처리를 적용하여 고위험군의 문제성 기포를 검출하는 알고리즘을 제안한다. 알고리즘은 문제성 기포의 후보를 구하는 단계와 후보를 검증하는 단계로 구성된다. 기포는 가시광 영상에서 나타나지 않지만, UV(Ultra Violet) 광원에서는 육안으로 구별이 가능하다. 특히, 문제성 기포의 중심은 밝기가 어둡고 테두리는 높은 밝기를 가진다. 이러한 밝기 특성을 논문에서는 협곡과 산맥 특징이라 부르고 두 가지 특징이 동시에 나타나는 영역을 문제성 기포의 후보라 하였다. 그러나 후보 중에는 기포가 아닌 후보가 존재할 수 있기 때문에 후보를 검증하는 단계가 필요하다. 후보 검증 단계에서는 합성곱 신경망 모델을 이용하였고, ResNet이 다른 모델과 비교하였을 때 성능이 가장 우수하였다. 본 논문에서 제시한 알고리즘은 정확률(Precision) 0.805, 재현율(Recall) 0.763, F1-점수(F1-score) 0.767의 성능을 보였고, 이러한 결과는 기포 검사 자동화에 대한 충분한 가능성을 보여준다.
보도는 보행자의 안전하고 쾌적한 통행을 목표로 하는 시설로, 다양한 재질의 블럭으로 포장되어 있다. 현재 우리나라는 보도 포장상태에 대한 정량적인 조사 방법이 부재하여 효율적인 조사 방법의 개발이 필요한 실정이다. 최근 드론은 다양한 분야에서 효율적인 조사 도구로 활용되고 있으나, 보도의 포장상태를 조사한 사례는 제한적인 실정이다. 본 연구는 드론을 이용한 보도블럭 파손 탐지 방법 개발을 위한 초기 연구로써 보도블럭의 탈락에 국한하여 탐지 가능성을 파악하고자 하였다. 이를 위하여 보도블럭을 인위적으로 제거하여 탈락을 상황을 모의하였고, 드론을 이용하여 0.7 cm 해상도의 영상을 촬영하였다. 영상 전처리를 통해 획득된 포인트 클라우드 자료의 특성으로 보도블럭 탈락 부위에서 포인트들이 갖는 표고의 분산이 높게 나타났다. 이러한 특성을 이용하여 보도 영역에 해당하는 격자에 포함되는 포인트들의 표고에 대한 분산에 4가지 임계치를 적용하여 보도블럭 탈락 부위를 탐지하는 실험을 진행하였다. 그 결과 정탐지율 70-80 %, 누락오차 20-30 %, 추가오차 2 % 이하의 탐지정확도를 획득하여 보도블럭 탈락의 탐지 가능성이 높은 것으로 판단된다. 본 연구의 결과는 제한적인 환경에서 모의된 보도블럭 탈락을 대상으로 하였으므로 향후 실제 환경을 고려한 추가 연구를 통해 효율적이고 정량적인 보도블럭 파손 탐지 방법이 개발될 수 있을 것으로 기대된다.
빠르게 증가하는 노후 터널을 효율적으로 관리하기 위하여 최근 영상장비를 이용한 점검 방법론들이 많이 제안되고 있다. 하지만 기존의 방법론들은 대부분 국한된 영역에서 검증을 수행하였을 뿐 아니라, 다른 물체들이 존재하지 않는 깨끗한 콘크리트 표면에서 검증되어 실제 현장에 대한 적용성을 검증하기 어려웠다. 따라서 본 논문에서는 이러한 한계를 극복하기 위하여 비균열 물체 학습에 기반한 6단계 터널 균열 탐지 딥러닝 모델 개발 프레임워크를 제안한다. 제안된 프레임워크는 터널에서 취득된 이미지 내 균열 탐색, 픽셀 단위 균열 라벨링, 딥러닝 모델 학습, 비균열 물체 수집, 비균열 물체 재학습, 최종 학습 데이터 구축의 총 6단계로 이루어진다. 제안된 프레임워크를 이용하여 개발된 균열 탐지 딥러닝 모델 개발을 수행하였으며, 일반 균열 1561장, 비균열 206장으로 개별 물체 세분화(Instance Segmentation) 모델인 Cascade Mask R-CNN을 학습시켰다. 학습된 모델의 현장 적용성을 검토하기 위하여 전선, 전등 등을 포함하는 약 200m 길이의 실제 터널에서 균열 탐지를 수행하였다. 실험 결과 학습된 모델은 99% 정밀도와 92%의 재현율을 나타내며 뛰어난 현장 적용성을 나타내었다.
태양광 패널은 중금속을 함유한 전자 폐기물이다. 전 세계적으로 매년 빠르게 증가하고 있으며 집중강우 시 유실되는 태양광전지 패널은 토양 중금속 오염의 문제 및 소규모 태양광 발전은 관리 부재라는 문제가 있어, 이를 효율적으로 모니터링하기 위한 기술 개발이 요구된다. 본 연구에서는 Sentinel-1 위성의 SAR Temporal Baseline과 Coherence간의 상관관계를 이용한 태양광전지 패널 모니터링 방법을 연구하였다. 또한, 태양광 발전소와 주변의 Coherence 차이를 이용한 태양광전지 패널 탐지를 실험하였다. 실험결과 안정적 산란체로 가정한 태양광전지 패널의 Coherence가 0.50~0.65 분포 0.53의 중앙값으로 치우친 편향을 보이고 있어 처리과정에서 발생될 수 있는 오차를 개선할 추가 연구가 요구된다. 태양광전지 패널의 Coherence 시간적 감소 비율이 건물 등 인공물체와 다름에 따라 시간적 기준선을 이용한 변화탐지가 가능할 것으로 나타났다. 본 연구결과는 기존 광학영상을 활용한 대규모 태양광 발전 시설 위치정보 획득 연구에서, 소규모 태양광전지 패널 모니터링이 가능하도록 영상레이더를 적용한 초기 연구이다. 또한, 본 연구를 바탕으로 지속적 모니터링이 가능하고 태양광전지 패널 유실과 같은 상황에서 공간적 분포를 파악할 수 있는 효율적인 방안이 될 수 있을 것으로 사료된다.
최근 COVID-19 확산 방지를 위한 공공장소에서는 최소 1m 이상을 유지하는 물리적 거리두기 정책을 실행하고 있다. 본 논문에서는 드론과 CCTV가 취득한 스테레오 영상에서 실시간으로 사람들 간의 거리를 추정하는 방법과 추정된 거리에서 1m 이내의 객체를 인식하는 자동화 시스템을 제안한다. 기존의 CCTV를 이용하여 다중 객체 간의 거리 추정에 사용되었던 방법의 문제점으로는 한 대의 CCTV만을 이용하여 객체의 3차원 정보를 얻지 못한다는 것이다. 선, 후행하거나 겹쳐진 사람 간의 거리를 구하기 위해서는 3차원 정보가 필요하기 때문이다. 또한, 일반적인 Detected Bounding Box를 사용하여 영역 안에서 사람이 존재하는 정확한 좌표를 얻지 못한다. 따라서 사람이 존재하는 정확한 위치 정보를 얻기 위해 스켈레톤 추출하여 관절 키포인트의 2차원 좌표를 획득한 후, Stereo Vision을 이용한 카메라 캘리브레이션을 적용하여 3차원 좌표로 변환한다. 3차원으로 변환된 관절 키포인트의 중심좌표를 계산하고 객체 간 사이의 거리를 추정한다. 3차원 좌표의 정확성과 객체(사람) 간의 거리 추정 실험을 수행한 결과, 1m 이내에 존재하는 다수의 사람 간의 거리 추정에서 0.098m 이내 평균오차를 보였다.
Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
Journal of the Korean Wood Science and Technology
/
제47권2호
/
pp.229-238
/
2019
목재의 결점은 생장과정에서 또는 가공 중에 다양한 형태로 발생한다. 따라서 목재를 이용하기 위해서는 목재의 결점을 정확하게 분류하여 용도에 맞는 목재 품질을 객관적으로 평가할 필요가 있다. 하지만 사람에 의한 등급구분과 수종구분은 주관적 판단에 의해 차이가 발생할 수 있기 때문에 목재 품질의 객관적 평가 및 목재 생산의 고속화를 위해서는 컴퓨터 비전을 활용한 화상분석 자동화가 필요하다. 본 연구에서는 SIFT+k-NN 모델과 CNN 모델을 통해 옹이의 종류를 자동으로 구분하는 모델을 구현하고 그 정확성을 분석해보고자 하였다. 이를 위하여 다섯 가지 국산 침엽수종으로부터 다양한 형태의 옹이 이미지 1,172개를 획득하여 학습 및 검증에 사용하였다. SIFT+k-NN 모델의 경우, SIFT 기술을 이용하여 옹이 이미지에서 특성을 추출한 뒤, k-NN을 이용하여 분류를 진행하였으며, 최대 60.53%의 정확도로 분류가 가능하였다. 이 때 k-index는 17이었다. CNN 모델의 경우, 8층의 convolution layer와 3층의 hidden layer로 구성되어있는 모델을 사용하였으며, 정확도의 최대값은 1205 epoch에서 88.09%로 나타나 SIFT+k-NN 모델보다 높은 결과를 보였다. 또한 옹이의 종류별 이미지 개수 차이가 큰 경우, SIFT+k-NN 모델은 비율이 높은 옹이 종류로 편향되어 학습되는 결과를 보였지만, CNN 모델은 이미지 개수의 차이에도 편향이 심하지 않아 옹이 분류에 있어 더 좋은 성능을 보였다. 본 연구 결과를 통해 CNN 모델을 이용한 목재 옹이의 분류는 실용가능성에 있어 충분한 정확도를 보이는 것으로 판단된다.
Objectives Previous studies have revealed inconsistent results on amygdala volume in adult bipolar disorder (BD) patients compared to healthy controls (HC). Since the amygdala encompasses multiple subregions, the subtle volume changes in each amygdala nucleus might have not been fully reflected in the measure of the total amygdala volume, causing discrepant results. Thus, we aimed to investigate volume changes in each amygdala subregion and their association with subtypes of BD, lithium use and clinical status of BD. Methods Fifty-five BD patients and 55 HC underwent T1-weighted structural magnetic resonance imaging. We analyzed volumes of the whole amygdala and each amygdala subregion, including the anterior amygdaloid area, cortico-amygdaloid transition area, basal, lateral, accessory basal, central, cortical, medial and paralaminar nuclei using the atlas in the FreeSurfer. The volume difference was analyzed using a one-way analysis of covariance with individual volumes as dependent variables, and age, sex, and total intracranial volume as covariates. Results The volumes of whole right amygdala and subregions including basal nucleus, accessory basal nucleus, anterior amygdaloid area, and cortico-amygdaloid transition area in the right amygdala of BD patients were significantly smaller for the HC group. No significant volume difference between bipolar I disorder and bipolar II disorder was found after the Bonferroni correction. The trend of larger volume in medial nucleus with lithium treatment was not significant after the Bonferroni correction. No significant correlation between illness duration and amygdala volume, and insignificant negative correlation were found between right central nucleus volume and depression severity. Conclusions Significant volume decrements of the whole amygdala, basal nucleus, accessory basal nucleus, anterior amygdaloid area, and cortico-amygdaloid transition area were found in the right hemisphere in adult BD patients, compared to HC group. We postulate that such volume changes are associated with altered functional activity and connectivity of amygdala nuclei in BD.
본 연구는 실내에서 화재 발생시 시각 장애인들을 지원하기 위한 영상 기반의 화재감지기를 제안한다. 건물 내에 화재가 발생하는 비상 상황 발생시 시각 장애인은 일반인보다 상황을 인지하는 것이 늦기 때문에 위험한 상황에 노출되기 쉽다. 기존의 연기 감지기와 같은 현재의 화재 감지 방법은 화재 발생시 발생하는 화학 센서 기반 기술을 사용함으로써 감지가 상대적으로 늦으며 화재가 확산된 후에 감지가 되는 등 낮은 신뢰성이 문제가 될 수 있다. 이를 보완하기 위해 영상 기반의 화재 감지 기술이 개발되었지만 낮은 정확도가 문제가 되어 실용화되지 못하였다. 최근 인공 지능을 위한 심층 학습 분야의 큰 발전으로 영상 내의 물체 인식률이 높아짐에 따라 관련 연구가 활발히 진행되고 있다. 따라서 본 연구에서는 보안 카메라 영상을 사용하여 화재를 감지할 수 있는 심층 학습 기반의 화재 감지기를 제안한다. 심층 학습 기반의 접근법은 영상에서 자동으로 특징을 학습할 수 있으므로 일반적으로 복잡한 상황에 대해서도 일반화가 가능하다. 본 논문에서는 화재감지 정확도와 속도 측면의 균형을 고려하여 두 개의 심층 합성곱 신경망 모델을 제안하였다. 실험을 통해 두 모델 모두 99%의 평균 정밀도로 화재를 감지할 수 있으며 첫 번째 모델은 초당 30장의 처리 속도와 76%의 정확도를 나타냈다. 두번째 모델은 초당 50장의 처리 속도와 61%의 정확도를 나타낸다. 또한 두 개의 모델의 메모리 사용량을 서로 비교하였으며 다양한 실제 화재 시나리오에서 테스트하여 신뢰할 수 있는 모델임을 증명하였다. 본 논문에 제안한 영상 기반 화재 감지기가 상용화된다면 상대적으로 실내 화재에 취약한 시각 장애인들의 안전에 도움이 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.