Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호21CTAP-C163726-01).
References
- Sanpei, T., and Mizoguchi, T. (2018), Fundamental Study for Real-Time Detection of Sudden Displacement by High-Speed Laser Scanner, Journal of Structural Integrity and Maintenance, 3(4), 227-232. https://doi.org/10.1080/24705314.2018.1536508
- Yamaguchi, T., Nakamura, S., Saegusa, R., and Hashimoto, S. (2008), Image-Based Crack Detection for Real Concrete Surfaces, IEEJ Transactions on Electrical and Electronic Engineering, Wiley Online Library, 3(1), 128-135. https://doi.org/10.1002/tee.20244
- Yu, S. N., Jang, J. H., and Han, C. S. (2007), Auto Inspection System Using a Mobile Robot for Detecting Concrete Cracks in a Tunnel, Automation in Construction, Elsevier, 16(3), 255-261. https://doi.org/10.1016/j.autcon.2006.05.003
- Lee, S. H., Shin, K. J., Kim, H. J., Kim, S. Y., Yoo, C. H., and Eom S. G. (2019), Introduction of Tunnel Crack Measurement Technology Using Image Scanning, Journal of Korean Society of Steel Construction, 31(6), 42-48.
- Song, Q., Wu, Y., Xin, X., Yang, L., Yang, M., Chen, H., Liu, C., HU, M., CHAI, X., and Li, J. (2019), Real-time Tunnel Crack Analysis System via Deep Learning. IEEE Access, IEEE, 7, 64186-64197. https://doi.org/10.1109/access.2019.2916330
- Li, G., Ma, B., He, S., Ren, X., and Liu, Q. (2020), Automatic Tunnel Crack Detection based on U-Net and a Convolutional Neural Network with Alternately Updated Clique. Sensors, MDPI, 20(3), 717. https://doi.org/10.3390/s20030717
- Ronneberger, O., Fischer, P., and Brox, T. (2015), U-net: Convolutional Networks for Biomedical Image Segmentation, International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Berlin, 234-241.
- Choi, Y., Kim, J., Cho, H., and Lee, C. (2019) Asphalt Concrete Pavement Surface Crack Detection using Convolutional Neural Network, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(6), 38-44.
- Kim B., and Cho, S. (2019), Image-based Concrete Crack Assessment using Mask and Region-based Convolutional Neural Network, Structural Control and Health Monitoring, Wiley, 26(8), e2381(1-15). https://doi.org/10.1002/stc.2381
- Kim B., and Cho, S. (2020), Automated Multiple Concrete Damage Detection Using Instance Segmentation Deep Learning Model, Applied Sciences, MDPI, 9(20), 4444(1-14). https://doi.org/10.3390/app9204444
- Jang, K., An, Y.-K., Kim, S., and Cho, S. (2021) Automated Crack Evaluation of a High-Rise Bridge Pier Using a Ring-Type Climbing Robot, Computer-aided Civil and Infrastructure Engineering, Wiley, 26, 14-29. https://doi.org/10.1111/mice.12550
- He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017), Mask r-cnn. Proceedings of the IEEE international conference on computer vision, IEEE, 2961-2969.
- Cai, Z., and Vasconcelos, N. (2018), Cascade r-cnn: Delving into High Quality Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Piscataway, 6154-6162.
- Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., and Zitnick, C. L. (2014), Microsoft Coco: Common Objects in Context, European Conference on Computer Vision, Springer, Berlin, 740-755.
- Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D. (2019), MMDetection: Open Mmlab Detection Toolbox and Benchmark, ArXiv Preprint, ArXiv, 1906.07155.
- Robbins, H., and Monro, S. (1951), A Stochastic Approximation Method, The Annals of Mathematical Statistics, Institute of Mathematical Statistics, 400-407.
- Pascanu, R., Mikolov, T., and Bengio, Y. (2013), On the Difficulty of Training Recurrent Neural Networks, International Conference on Machine Learning, PMLR, 1310-1318.
- Loshchilov, I., and Hutter, F. (2016), SGDR: Stochastic Gradient Descent with Warm Restarts, ArXiv Preprint, arXiv, 1608.03983.
- Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. (2009). Imagenet: A Large-Scale Hierarchical Image Database, 2009 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Piscataway, 248-255.
- Xie, S., Girshick, R., Dollar, P., Tu, Z., and He, K. (2017), Aggregated Residual Transformations for Deep Neural Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Piscataway, 1492-1500.