• Title/Summary/Keyword: IM(Induction Motor)

Search Result 161, Processing Time 0.022 seconds

Modified Neural Network-based Self-Tuning Fuzzy PID Controller for Induction Motor Speed Control (유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Lee, Gong-Hee;Im, Jeong-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1182-1184
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PID control scheme for induction motor speed control. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PID controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink is performed to verify the effectiveness of the proposed scheme.

  • PDF

Phasor Analysis of Sensorless Vector Control System Model for Induction Motor (유도전동기 센서리스 벡터제어 시스템 모델의 페이저 해석)

  • Lee, H.J.;Hwang, J.H.;Seong, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2015-2017
    • /
    • 1998
  • This paper deals with the design of a field oriented control system model for the high performance induction motor using Matlab with Simulink. The proposed control system model, which is not used the speed and flux sensor, contains IM model, Tranformation, Decoupling, FFOC(Field Flux Orientation Controller), Torque calculator and PI Controller to control speed, torque. Results present the stator and rotor flux phasor trajectory, the startup and transient response of speed, torque and stator current with field oriented control and the response to changes in reference speed with no load. This paper shows that the propose control system is more robust than other vector control system, and suggest the enchanced model, using Matlab with Simulink for the high performance in induction motor control.

  • PDF

A New Study on Indirect Vector AC Current Control Method Using a Matrix Converter Fed Induction Motor

  • Lee Hong-Hee;Nguyen Hoang M.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • This paper introduces two different types of AC current control methods for an indirect vector controlled induction motor using a matrix converter. The proposed methods combine the advantages of matrix converters with the advantages of the indirect vector AC current control methods. The first proposed method explains the basic idea of the hysteresis current control method for matrix converters and shows its capability and stability in comparison to the conventional method usually used for VSI. With the aid of the special configuration of the matrix converter, we also propose another current method which is modified from the first one in order to reduce both current ripple and torque ripple. Simulation results have verified the feasibility and the effectiveness of the proposed methods.

Fininte Element Analysis of Squirrel-cage Induction Motor Taking into account the End-ring (엔드링을 고려한 농형 유도전동기의 2차원 유한요소해석)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.49-55
    • /
    • 1999
  • This paper proposes an efficient 2D Finite Element Method(FEM) taking into account the end-ring of three phase squirrel-cage induction motors. The parameters of the squirrel-cage induction motor such as conductivity of secondary conductor have an effect on the characteristics of a motor. Especially, if the characteristic analysis is done without considering the end-ring, the good results can not be obtained. Therefore, we calculated a new resistivity of the secondary conductor including the end-ring's resistance to apply the 2D FEM. Then, the performances of the motors are analyzed by using the new resistivity of secondary conductor which contains the end-ring resistivity. The validity of the proposed method is verified by comparing the numerical results with experimental ones.

  • PDF

Implementation of Self-Tuning Fuzzy Control System for Speed Control of an Induction Motor

  • Shin, Song-Ho;Jin, Shim-Young;Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.449-452
    • /
    • 1998
  • In this paper, we implemented the variable fuzzy speed controller of an IM(induction motor) using the fuzzy control algorithms. Specially, we proposed a self-tuning technique of scale factors which could make easily the fuzzy speed controller optimize. Comparing with the conventional PI speed controller, the dynamic performances of a proposed fuzzy controller such as the reaching time, the maximum overshoot and the robustness against load disturbance were substantially improved.

  • PDF

On the Local Identifiability of Load Model Parameters in Measurement-based Approach

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.149-158
    • /
    • 2009
  • It is important to derive reliable parameter values in the measurement-based load model development of electric power systems. However parameter estimation tasks, in practice, often face the parameter identifiability issue; whether or not the model parameters can be estimated with a given input-output data set in reliable manner. This paper introduces concepts and practical definitions of the local identifiability of model parameters. A posteriori local identifiability is defined in the sense of nonlinear least squares. As numerical examples, local identifiability of third-order induction motor (IM) model and a Z-induction motor (Z-IM) model is studied. It is shown that parameter ill-conditioning can significantly affect on reliable parameter estimation task. Numerical studies show that local identifiability can be quite sensitive to input data and a given local solution. Finally, several countermeasures are proposed to overcome ill-conditioning problem in measurement-based load modeling.

Performance Improvement of Spindle Induction Motor in Field Weakening Region Using Furry Controller (퍼지제어기를 이용한 약계자영역에서 스핀들유도전동기의 성능 개선)

  • Sin, Soo-Cheol;Yu, Jae-Sung;Hwang, Sun-Mo;Kim, Hong-Ju;Won, Chung-Yeun;Kim, Young-Real
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.461-466
    • /
    • 2005
  • This paper presents a new speed control scheme of the spindle induction motor (IM) using fuzzy-logic control in fold weakening region. The implementation of the proposed FLC-based spindle IM are investigated and compared to those obtained from the conventional PI controller based drive system, we have confirmed good simulation and experimental results at different dynamic operating conditions such as sudden change in command speed, step change, etc.

  • PDF

Implementation of Fuzzy-Logic-Based Indirect Vector Control for Spindle Induction Motor in Field Weakening Region (약계자 영역에서 퍼지 추론을 인용한 스핀들 유도전동기 간접벡터제어)

  • Yoon J. M.;Yu J. S.;Won C. Y.;Choi C.;Lee S. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.303-307
    • /
    • 2004
  • This paper presents a new speed control scheme of the spindle induction motor (IM) using fuzzy-logic control in field weakening region. The implementation of the proposed FLC-based spindle IM are investigated and compared to those obtained from the conventional PI controller based drive system, we have confirmed good simulation and experimental results at different dynamic operating conditions such as sudden change in command speed, step change, etc.

  • PDF

Feed-Forward Approach in Stator-Flux-Oriented Direct Torque Control of Induction Motor with Space Vector Pulse-Width Modulation

  • Kizilkaya, Muhterem Ozgur;Gulez, Kayhan
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.994-1003
    • /
    • 2016
  • Two major obstacles in the utilization of electrical vehicles are their price and range. The collaboration of direct torque control (DTC) with induction motor (IM) is preferred for its low cost, easy implementation, and parameter independency. However, in terms of edges, the method has drawbacks, such as variable switching frequency and undesired current harmonic distortion. These drawbacks result in acoustic noise, reduced efficiency, and electromagnetic interference. A feed-forward approach for stator-flux-oriented DTC with space vector pulse-width modulation is presented in in this paper. The outcome of the proposed method is low current harmonic distortion with fixed switching frequency while preserving the torque performance and simple application feature of basic DTC. The method is applicable to existing and forthcoming IM drive systems via software adaptation. The validity of the proposed method is confirmed by simulation and experimental results.

Induction Motor Position Control Using Integral-Compensating Variable Structure Control Algorithm (적분보상형 가변구조제어기법을 이용한 유도 전동기 위치제어)

  • 강문호;정경민;박윤창
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.205-209
    • /
    • 1999
  • This paper proposes a variable structure position controller for an induction motor(IM) which uses a reaching law and an integral compensating nonlinear switching function. With the reaching law, reaching mode can be established quantitatively during transient state so that dynamic control performance is improved. With the integral compensating nonlinear switching function, both very low overshoot and high steady state control accuracy can be obtained by compensating the states chattering problem due to the unmodelled dynamics of inverter and feedback sensors. For experiment a digital servo driver which consists of a DSP and an IPM inverter was developed. With the various experimental results, IM position control performance was verified.

  • PDF