• Title/Summary/Keyword: IL-1 receptor-associated kinase 1

Search Result 28, Processing Time 0.026 seconds

Tyrosine phosphorylation as a signaling component for plant improvement

  • Park, Youn-Il;Yang, Hyo-Sik;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.277-283
    • /
    • 2015
  • Plant genome analyses, including Arabidopsis thaliana showed a large gene family of plant receptor kinases with various extracellular ligand-binding domain. Now intensively studies to understand physiological and cellular functions for higher plant receptor kinases in diverse and complex biological processes including plant growth, development, ligands perception including steroid hormone and plant-microbe interactions. Brassinosteroids (BRs) as a one of well know steroid hormone are plant growth hormones that control biomass accumulation and also tolerance to many biotic and abiotic stress conditions and hence are of relevance to agriculture. BRI1 receptor kinase, which is localized in plasma membrane in the cell sense BRs and it bind to a receptor protein known as BRASSINOSTEROID INSENSITIVE 1 (BRI1). Recently, we reported that BRI1 and its co-receptor, BRI1-ASSOCIATED KINASE (BAK1) autophosphorylated on tyrosine residue (s) in vitro and in vivo and thus are dual-specificity kinases. Other plant receptor kinases are also phosphorylated on tyrosine residue (s). Post-translational modifications (PTMs) can be studied by altering the residue modified by directed mutagenesis to mimic the modified state or to prevent the modification. These approaches are useful to not only characterize the regulatory role of a given modification, but may also provide opportunities for plant improvement.

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong;Han, Sang-In;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.371-376
    • /
    • 2002
  • The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

Muscle-specific receptor tyrosine kinase (MuSK) myasthenia gravis associated with castleman disease

  • Oh, Jeeyoung;Yang, Woo Ick;Cho, Jeong Hoon;Sunwoo, Il Nam
    • Annals of Clinical Neurophysiology
    • /
    • v.19 no.1
    • /
    • pp.74-76
    • /
    • 2017
  • Muscle specific tyrosine kinase (MuSK) myasthenia gravis (MG) is a rare subtype of MG, which is immunologically distinct and differential therapeutic response. Though MG is often associated with other autoimmune disorders or malignancy, concurrence of other disease and MuSK MG has been infrequently reported. We present a patient of MuSK MG associated with multicentric Castelman disease.

Anti-inflammatory effects of a novel compound, MPQP, through the inhibition of IRAK1 signaling pathways in LPS-stimulated RAW 264.7 macrophages

  • Kim, Ba Reum;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.308-313
    • /
    • 2018
  • Small-molecule inhibitors are widely used to treat a variety of inflammatory diseases. In this study, we found a novel anti-inflammatory compound, 1-[(2R,4S)-2-methyl-4-(phenylamino)-1,2,3,4-tetrahydroquinolin-1-yl]prop-2-en-1-one (MPQP). It showed strong anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. These effects were exerted through the inhibition of the production of NO and pro-inflammatory cytokines, such as interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). Furthermore, MPQP decreased the expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Additionally, it mediated the inhibition of the phosphorylation of p38, c-Jun N-terminal kinase (JNK), the inhibitor of ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$), and their upstream kinases, $I{\kappa}B$ kinase (IKK) ${\alpha}/{\beta}$, mitogen-activated protein kinase kinase (MKK) 3/6, and MKK4. Furthermore, the expression of IL-1 receptor-associated kinase 1 (IRAK1) that regulates $NF-{\kappa}B$, p38, and the JNK signaling pathways, was also increased by MPQP. These results indicate that MPQP regulates the IRAK1-mediated inflammatory signaling pathways by targeting IRAK1 or its upstream factors.

Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구)

  • Song, Seung-Il;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.

The effect of rosehip extract on TNF-α, IL-1β, and IL-8 production in THP-1-derived macrophages infected with Aggregatibacter actinomycetemcomitans

  • Song, Yuri;Kim, Si young;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.47 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Inflammation is a protective mechanism against pathogens, but if maintained continuously, it destroys tissue structures. Aggregatibacter actinomycetemcomitans is a gram-negative, facultative anaerobic bacterium often found in severe periodontitis. A. actinomycetemcomitans invades epithelial cells and triggers inflammatory response in the immune cells. In this study, we investigated the effect of water-soluble rosehip extract on A. actinomycetemcomitans-induced inflammatory responses. A human monocytic cell line (THP-1) was differentiated to macrophages by phorbol 12-mystristate 13-acetate treatment. The cytotoxic effect of extract was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effects of extract on bacterial growth were examined by measuring the optical densities using a spectrophotometer. THP-1-derived macrophages were infected A. actinomycetemcomitans after extract treatment, and culture supernatants were analyzed for cytokine production using enzyme-linked immunosorbent assay. Protein expression was measured by western blotting. Extract was not toxic to THP-1-derived macrophages. A. actinomycetemcomitans growth was inhibited by 1% extract. The extract suppressed A. actinomycetemcomitans-induced tumor necrosis factor-α, interleukin (IL)-1β, and IL-8 production. It also decreased mitogen-activated protein kinase (MAP kinase) and nuclear factor-κB (NF-κB) phosphorylation. Moreover, the extract inhibited the expression of inflammasome components, including nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3, Absent in Melanoma 2, and apoptosis associated speck-like protein containing a CARD. And cysteine-aspartic proteases-1 and IL-1β expression were decreased by the extract. In summary, extract suppressed A. actinomycetemcomitans growth and decreased inflammatory cytokine production by inhibiting activation of MAP kinase, NF-κB, and inflammasome signaling. Rosehip extract could be effective in the treatment of periodontal inflammation induced by A. actinomycetemcomitans infection.

Induction of Dectin-1 Expression and Intracellular Signal Transduction by β-Glucan of Ganoderma lucidum (불로초의 β-Glucan에 의한 Dectin-1 발현 유도와 세포 내 신호전달)

  • Ryu, Han Wook;Kim, Ha Won
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.161-176
    • /
    • 2018
  • Fungal ${\beta}$-glucan, known to have immunostimulatory and antitumor activities, can be recognized by host immune cells as one of the pathogen-associated molecular patterns (PAMPs). Although there are several reports on the diverse immunostimulatory activities of ${\beta}$-glucan, little is known about the intracellular signal transduction of ${\beta}$-glucan. Stimulation of RAW264.7 macrophage cells with ${\beta}$-glucan from Ganoderma lucidum induced the expressions of dectin-1, toll-like receptor 2 (TLR2), TLR4, and TLR6 at the transcription stage. Treatment with ${\beta}$-glucan also induced inflammatory mediators such as macrophage inflammatory proteins (MIP)-$1{\alpha}$, MIP-$1{\beta}$, MIP-$1{\gamma}$, interleukin (IL)-$1{\beta}$, and tumor necrosis factor (TNF)-${\alpha}$. Treatment of the cells with polymyxin B, an inhibitor of lipopolysaccharides (LPS), blocked the induction of inflammatory mediators in LPS- or ${\beta}$-glucan-stimulated systems. Pretreatment of the cells in our cell culture system with LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, or U0126, a mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) kinase (MEK)1/MEK2 inhibitor, led to a reduction in the induction of inflammatory mediators in a concentration-dependent manner. These results show that stimulation of the macrophage cells by ${\beta}$-glucan induced the expressions of both dectin-1 and TLRs. We also found that the PI3K/Akt and MEK pathways were involved in the induction of inflammatory mediators in macrophage cells during intracellular signal transduction of ${\beta}$-glucan.

Upregulation of Lipopolysaccharide-Induced Interleukin-10 by Prostaglandin $A_1$ in Mouse Peritoneal Macrophages

  • Kim, Hyo-Young;Kim, Jae-Ryong;Kim, Hee-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1170-1178
    • /
    • 2008
  • The cyclopentenone prostaglandins (cyPGs) prostaglandin $A_1$ ($PGA_1$) and 15-deoxy-${\Delta}^{12,14}$-prostaglandin $J_2$ (15d-$PGJ_2$) have been reported to exhibit antiinflammatory activity in activated monocytes/macrophages. However, the effects of these two cyPGs on the expression of cytokine genes may differ. In this study, we investigated the mechanism of action of $PGA_1$ in lipopolysaccharide (LPS)-induced expression of inter leu kin (IL)-10 mRNA in mouse peritoneal macrophages. 15d-$PGJ_2$ inhibited expression of LPS-induced IL-10, whereas $PGA_1$ increased LPS-induced IL-10 expression. This synergistic effect of $PGA_1$ on LPS-induced IL-10 expression reached a maximum as early as 2 h after simultaneous $PGA_1$ and LPS treatment ($PGA_1$/LPS), and did not require new protein synthesis. The synergistic effect of $PGA_1$ was inhibited by GW9662, a specific peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$ antagonist, and Bay-11-7082, a NF-${\kappa}B$ inhibitor. The extracellular signal-regulated kinases (ERK) inhibitor PD98059 increased the expression of $PGA_1$/LPS-induced IL-10 mRNA, rather than inhibiting the IL-10 expression. Moreover, $PGA_1$ inhibited LPS-induced ERK phosphorylation. The synergistic effect of $PGA_1$ on LPS-induced IL-10 mRNA and protein production was inhibited by p38 inhibitor PD169316, and $PGA_1$ increased LPS-induced p38 phosphorylation. In the case of stress-activated protein kinase/c-Jun $NH_2$-terminal kinase (SAPK/JNK), the SAPK/JNK inhibitor SP600125 did not inhibit IL-10 mRNA synthesis but inhibited the production of IL-10 protein remarkably. These results suggest that the synergistic effect of $PGA_1$ on LPS-induced IL-10 expression is NF-${\kappa}B$-dependent and mediated by mitogen-activated protein (MAP) kinases, p38, and SAPK/JNK signaling pathways, and also associated with the $PPAR{\gamma}$ pathway. Our data may provide more insight into the diverse mechanisms of $PGA_1$ effects on the expression of cytokine genes.

Effect of Germinated Brown Rice on LPS-Induced Inflammation in Adipocytes (발아현미가 LPS로 유도된 지방세포의 염증반응에 미치는 영향)

  • Park, Mi-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Germinated brown rice (GBR, Orysa sartiva L.) has been reported to have anti-obesity and anti-inflammatory effects. However, the mechanisms underlying these effects in adipocytes are not fully understood. Therefore, this study was conducted to explore the anti-inflammatory mechanisms of GBR on lipopolysaccharide (LPS)-stimulated 3T3-L1 adipocytes. 3T3-L1 adipocytes were pretreated with GBR extracts (0-20 mg/mL) 1 h before LPS stimulation. The mRNA expression of adipokines and Toll-like receptor 4 (TLR4) were measured by RT-PCR. The protein expressions of TLR4-related molecules were detected by western blotting and nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) activation was measured. Our results showed that GBR extract dose-dependently inhibited mRNA expression of LPS-induced tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). GBR extract was found to inhibit LPS-induced mRNA expression of TLR4 and protein expression of both myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factor 6 (TRAF6). Furthermore, GBR extract significantly inhibited extracellular receptor-activated kinase (ERK) phosphorylation and $NF-{\kappa}B$ activation. These results suggest that GBR extract has the anti-inflammatory effects on LPS-induced inflammation via inhibition of TLR4 signaling, includingthe ERK and $NF-{\kappa}B$ signaling pathways, in adipocytes.

Effects of troxerutin on vascular inflammatory mediators and expression of microRNA-146a/NF-κB signaling pathway in aorta of healthy and diabetic rats

  • Che, Xing;Dai, Xiang;Li, Caiying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.395-402
    • /
    • 2020
  • This study has investigated the effect of a potent bioflavonoid, troxerutin, on diabetes-induced changes in pro-inflammatory mediators and expression of microRNA-146a and nuclear factor-kappa-B (NF-κB) signaling pathway in aortic tissue of type-I diabetic rats. Male Wistar rats were randomly divided into four groups (n = 6/each): healthy, healthy-troxerutin, diabetic, and diabetic-troxerutin. Diabetes was induced by streptozotocin injection (60 mg/kg; intraperitoneally) and lasted 10 weeks. Troxerutin (150 mg/kg/day) was administered orally for last month of experiment. Inflammatory cytokines IL-1β, IL-6, and TNF-α, as well as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM), cyclooxygenase-II (COX-II), and inducible-nitric oxide synthase (iNOS) were measured on aortic samples by enzyme-linked immunosorbent assay. Gene expressions for transcription factor NF-κB, interleukin-1 receptor-associated kinase-1 (IRAK-1), TNF receptor-associated factor-6 (TRAF-6), and microRNA-146a were determined using real-time polymerase chain reaction. Ten-week diabetes significantly increased mRNA levels of IRAK-1, TRAF-6, NF-κB, and protein levels of cytokines IL-1β, IL-6, TNF-α, adhesion molecules ICAM-1, VCAM, and iNOS, COX-II, and decreased expression of microRNA-146a as compared with healthy rats (p < 0.05 to p < 0.01). However, one month treatment of diabetic rats with troxerutin restored glucose and insulin levels, significantly decreased expression of inflammatory genes and pro-inflammatory mediators and increased microRNA level in comparison to diabetic group (p < 0.05 to p < 0.01). In healthy rats, troxerutin had significant reducing effect only on NF-κB, TNF-α and COX-II levels (p < 0.05). Beside slight improvement of hyperglycemia, troxerutin prevented the activation of NF-κB-dependent inflammatory signaling in the aorta of diabetic rats, and this response may be regulated by microRNA-146a.