• Title/Summary/Keyword: IKONOS-2

Search Result 117, Processing Time 0.02 seconds

SGM Performance Improvement of Stereo Satellite Image with Classified Image and Edge Image (분류영상과 에지영상을 이용한 입체 위성영상의 SGM 성능개선)

  • Lee, Hyoseong;Park, Byungwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.655-661
    • /
    • 2020
  • SGM (Semi Global Matching) can be used to find all the conjugate points between stereo images. Therefore, it enables high-density DSM (Digital Surface Model) production from high-resolution satellite images. However, water, shadows, and occlusion areas cause mismatching of the surrounding points in this method. Particularly, in buildings with large-parallax and elongated-shapes such as a Korean style apartment, it is difficult to reconstruct the 3D building even if the SGM method is applied to a high-resolution 50cm satellite image. This study proposed and performed the SGM technique with a classified image and an edge image from the IKONOS-2 satellite stereo-image with a 1m resolution to produce DSM. It was compared with the DSMs from the general SGM and the high-density ABM (Area Based Matching) matching of ERDAS software. The results of the apartment DSM by the proposed method were the best in the test area. As a result, despite the image having a resolution of 1m, the outline of the building DSM could be expressed more clearly than the existing method.

Coral Reef Habitat Monitoring Using High-spatial Satellite Imagery : A Case Study from Chuuk Lagoon in FSM (고해상도 위성영상을 이용한 산호초 서식환경 모니터링 : 축라군 웨노섬을 중심으로)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Choi, Jong-Kuk;Park, Heung-Sik
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • The distribution of coral reefs can be an indicator of environmental or anthropogenic impacts. Here, we present a habitat map of coral reefs developed using high-spatial satellite images. The study area was located on the north-eastern part of Weno island, in the Chuuk lagoon of Federated States of Micronesia. Two fieldwork expeditions were carried out between 2007 and 2008 to acquire optical and environmental data from 121 stations. We used an IKONOS image obtained in December 2000, and a Kompsat-2 image obtained in September 2008 for the purpose of coral reef mapping. We employed an adapted version of the object-based classification method for efficient classification of the high-spatial satellite images. The habitat map generated using Kompsat-2 was 72.22% accurate in terms of comparative analysis with in-situ measurements. The result of change detection analysis between 2000 and 2008 showed that coral reef distribution had decreased by 6.27% while seagrass meadows had increased by 8.0%.

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

Accuracy Analysis of DEMs Generated from High Resolution Optical and SAR Images (고해상도 광학영상과 SAR영상으로부터 생성된 수치표고모델의 정확도 분석)

  • Kim, Chung;Lee, Dong-Cheon;Yom, Jae-Hong;Lee, Young-Wook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.337-343
    • /
    • 2004
  • Spatial information could be obtained from spaceborne high resolution optical and synthetic aperture radar(SAR) images. However, some satellite images do not provide physical sensor information instead, rational polynomial coefficients(RPC) are available. The objectives of this study are: (1) 3-dimensional ground coordinates were computed by applying rational function model(RFM) with the RPC for the stereo pair of Ikonos images and their accuracy was evaluated. (2) Interferometric SAR(InSAR) was applied to JERS-1 images to generate DEM and its accuracy was analysis. (3) Quality of the DEM generated automatically also analyzed for different types of terrain in the study site. The overall accuracy was evaluated by comparing with GPS surveying data. The height offset in the RPC was corrected by estimating bias. In consequence, the accuracy was improved. Accuracy of the DEMs generated from InSAR with different selection of GCP was analyzed. In case of the Ikonos images, the results show that the overall RMSE was 0.23327", 0.l1625" and 13.70m in latitude, longitude and height, respectively. The height accuracy was improved after correcting the height offset in the RPC. i.e., RMSE of the height was 1.02m. As for the SAR image, RMSE of the height was 10.50m with optimal selection of GCP. For the different terrain types, the RMSE of the height for urban, forest and flat area was 23.65m, 8.54m, 0.99m, respectively for Ikonos image while the corresponding RMSE was 13.82m, 18.34m, 10.88m, respectively lot SAR image.

  • PDF

Assessment of Possibility for Unaccessible Areas Positioning Using Ortho Imagery (정사영상을 이용한 비접근지역의 위치결정 가능성 평가)

  • Kang Joon-Mook;Lee Yong-Woong;Jo Hyeon-Wook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.287-291
    • /
    • 2006
  • Currently application of high-resolution satellite imagery is expanding with development of high tech optical and space aviation technology. Although using 3 dimensional modeling technology in order to attain accurate terrain information using existing ground control points is the most dependable reference data, such means are unapplicable for certain area because of it's limited access. In this study, we have researched into ways to utilizing high resolution satellite images from IKONOS and Quickbird, and sub-meter class satellites images that will be utilized In the future such as Arirang images and PLEIADES images for unaccessible areas. For that purpose we have created accuracy verification and GCP files for existing ortho-imagery and digital elevation model. The results showed that accuracy of ortho-Imagery and digital elevation model was RMSE X:3.043m, Y:2.921m, Z:6.139m. Also, after ortho-rectifying IKONOS images using ground control points extracted from ortho imagery and digital elevation model the accuracy of the imagery was RMSE X:3.243m, Y:2.067m, Z:1.872m.

  • PDF

Analysis of Relation of Class Separability According to Different Kind of Satellite Images (위성영상의 종류에 따른 분리도 특성의 상관관계 분석)

  • Hong, Soon-Heon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.215-224
    • /
    • 2007
  • The classification of the satellite images is basic part in Remote sensing. In classification of the satellite images, class separability feature is very effective accuracy of the images classified. For improving classification accuracy, It is necessary to study classification methode than analysis of class separability feature deciding classification probability. In this study, IKONOS, SPOT 5, Landsat TM, were resampled to sizes 1m grid. Above images were calculated the class separability prior to the step for classification of pixels. This Study concludes, each image was measured by the rate of class separability, values classified were showed highly about $1,600{\sim}2,000$.

Brightness Value Comparison Between KOMPSAT-2 Images with IKONOS/GEOEYE-1 Images (KOMPSAT-2 영상과 IKONOS/GEOEYE-1 영상의 밝기값 상호비교)

  • Kim, Hye-On;Kim, Tae-Jung;Lee, Hyuk
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.181-189
    • /
    • 2012
  • Recently, interest in potential for estimating water quality using high resolution satellite images is increasing. However, low SNR(Signal to Noise Ratio) over inland water and radiometric errors such as non-linearity of brightness value of high resolution satellite images often lead to accuracy degradation in water quality estimation. Therefore radiometric correction should be carried out to estimate water quality for high resolution satellite images. For KOMPSAT-2 images parameters for brightness value-radiance conversion are not available and precise radiometric correction is difficult. To exploit KOMPSAT-2 images for water quality monitoring, it is necessary to investigate non-linearity of brightness value and noise over inland water. In this paper, we performed brightness value comparison between KOMPSAT-2 images and IKONOS/GeoEye-1, which are known to show the linearity. We used the images obtained over the same area and on the same date for comparison. As a result, we showed that although KOMPSAT-2 images are more noisy;the trend of brightness value and pattern of noise are almost similar to reference images. The results showed that appropriate target area to minimize the impact of noise was $5{\times}5$. Non-linearity of brightness value between KOMPSAT-2 and reference images was not observed. Therefore we could conclude that KOMPSAT-2 may be used for estimation of water quality parameters such as concentration of chlorophyll.

Modification of IKONOS RPC Using Additional GCP (지상기준점 추가에 의한 IKONOS RPC 갱신)

  • Bang, Ki-In;Jeong, Soo;Kim, Kyung-Ok;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.41-50
    • /
    • 2002
  • RPM is the one of the sensor models which is proposed by Open GIS Consortium (OGC) as image transfer standard. And it is the sensor model for end-users using IKONOS, a commercial pushbroom satellite, imagery which provide about 1m ground resolution. Parameters called RPC which is IKONOS RFM coefficients are serviced to end-users. But if some users try to make additional effort to get rigorous geo-spatial information, it is necessary to apply mathematic or abstract sensor models, because vendors don't offer any ancillary data for physical sensor models such as satellite orbit and navigation. Abstract sensor models such as pushbroom Direct Linear Transform (DLT) require many GCPs well distributed in imagery, and mathematic sensor model such as RFM, polynomials need much more GCPs. Therefore RPC modification using additional a few GCPs is the best solution. In this paper, two methods are proposed to modify RPC. One is method to use pseudo GCPs generated in normalized cubic, and another method uses parameters observations and a few GCPs. Through two methods, we get improvement of accuracy 50% and over.

  • PDF

Comparison of Landcover Map Accuracy Using High Resolution Satellite Imagery (고해상도 위성영상의 토지피복분류와 정확도 비교 연구)

  • Oh, Che-Young;Park, So-Young;Kim, Hyung-Seok;Lee, Yanng-Won;Choi, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • The aim of this study is to produce land cover maps using satellite imagery with various degrees of high resolution and then compare the accuracy of the image types and categories. For the land cover map produced on a small-scale classification the estuary area around the Nakdong river, including an urban area, farming land and waters, was selected. The images were classified by analyzing the aerial photos taken from KOMPSAT2, Quickbird and IKONOS satellites, which all have a resolution of over 1m to the naked eye. Once all of the land cover maps with different images and land cover categories had been produced they were compared to each other. Results show that image accuracy from the aerial photos and Quickbird was relatively higher than with KOMPSAT2 and IKONOS. The agreement ratio for the large-scale classification across the classification methods ranged between 0.934 and 0.956 for most cases. The Kappa value ranged between 0.905 and 0.937; the agreement ratio for the middle-scale classification was 0.888~0.913 and the Kappa value was 0.872~0.901. The agreement ratio for the small-scale classification was 0.833~0.901 and the Kappa value was 0.813~0.888. In addition, in terms of the degree of confusion occurrence across the images, there was confusion on the urbanized arid areas and empty land in the large-scale classification. For the middle-scale classification, the confusion mainly occurred on the rice paddies, fields, house cultivating area and artificial grassland. For the small-scale classification, confusion mainly occurred on natural green fields, cultivating land with facilities, tideland and the surface of the sea. The findings of this study indicate that the classification of the high resolution images with the naked eye showed an agreement ratio of over 80%, which means that it can be used in practice. The findings also suggest that the use of higher resolution images can lead to increased accuracy in classification, indicating that the time when the images are taken is important in producing land cover maps.