• Title/Summary/Keyword: IIRS

Search Result 14, Processing Time 0.019 seconds

Factorial Validity of the Korean Version of the Illness Intrusive Rating Scale among Psychiatric Outpatients Mainly Diagnosed with Anxiety or Depressive Disorders (불안 및 우울장애를 주요 진단으로 하는 정신건강의학과 외래환자 대상 한국판 질병침습도 평가척도의 요인 타당도 연구)

  • Cho, Yubin;Kim, Daeho;Kim, Eunkyung;Jo, Hwa Yeon;Yun, Mirim;Lee, Hoseon
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.27 no.2
    • /
    • pp.77-84
    • /
    • 2019
  • Objectives : The Illness Intrusiveness Rating Scale (IIRS) is a well-validated self-report instrument for assessing negative impact of chronic illness and/or adverse effects of its treatment on everyday life domains. Although extensive literature probed its psychometric properties in medical illness, little attention was paid for its validity for psychiatric population. This study aimed to test factorial structure of the Korean Version of the IIRS (IIRS-K) in a consecutive sample of psychiatric outpatients. Methods : Data set of 307 first-visit patients of psychiatric clinic at Guri Hanyang univ. Hospital were used. Exploratory and confirmatory factor analysis, internal consistency were tested in IIRS-K. We also checked Spearman's correlation analysis between IIRS-K, Zung's self-report anxiety scale and Zung's self-report depression scale. Results : 76.9% of the patients were with anxiety disorder and depressive disorder. The principal component factor analysis of the IIRS-K extracted three-factor structure accounted for 63.2% of total variance that was contextually similar to the original English version. This three-factor solution showed the best fit when tested confirmatory factor analysis compared to the original IIRS, two-factor model of IIRS-K suggested from medical outpatients, and one-factor solution. The IIRS-K also showed good internal consistency (Cronbach's α=0.90) and good convergent validity with anxiety and depression scales. Conclusions : The IIRS-K showed the three-factor structure that was similar but not identical to original version. Overall, this study proved factorial validity of the IIRS-K and it can be used for Korean clinical population.

Investigation of the accuracy of different finite element model reduction techniques

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.417-428
    • /
    • 2018
  • In this paper, various model reduction methods were assessed using a shear frame, plane and space truss structures. Each of the structures is one-dimensional, two-dimensional and three-dimensional, respectively. Three scenarios of poor, better, and the best were considered for each of the structures in which 25%, 40%, and 60% of the total degrees of freedom (DOFs) were measured in each of them, respectively. Natural frequencies of the full and reduced order structures were compared in each of the numerical examples to assess the performance of model reduction methods. Generally, it was found that system equivalent reduction expansion process (SEREP) provides full accuracy in the model reduction in all of the numerical examples and scenarios. Iterated improved reduced system (IIRS) was the second-best, providing acceptable results and lower error in higher modes in comparison to the improved reduced system (IRS) method. Although the Guyan's method has very low levels of accuracy. Structures were classified with the excitation frequency. High-frequency structures compared to low-frequency structures have been poor performance in the model reduction methods (Guyan, IRS, and IIRS).

Dynamic index storage and integrated searching service development (동적 색인 스토리지 및 통합 검색 서비스 개발)

  • Lee, Wang-Woo;Lee, Seok-Hyoung;Choe, Ho-Seop;Yoon, Hwa-Mook;Kim, Jong-Hwan;Hur, Yoon-Young
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.346-349
    • /
    • 2007
  • In this paper, the integrated search system made for the web news and review retrieval service is introduced. We made XSLTRobot that extract title, date, author and content from html document like news or reviews for search service. XSLTRobot used the XSLT technology in order to extract desired part of html page. The Intergrated Information Retrieval System(IIRS) is suitable for various search data format. And we introduce Dynamic Index Storage which is module of IIRS. Dynamic Index Storage is used to environment which needs fast index update like news. And it's design focused on retrieval performance because there was not many document that it has to update on a real time.

  • PDF

Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (I) - Undamped Structural Systems - (부구조화 기법을 연동한 반복적인 동적 축소법 (I) - 비감쇠 구조 시스템 -)

  • Choi, Dong-Soo;Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.211-220
    • /
    • 2007
  • This work presents an iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for large structures. Iterated IRS methods are usually more efficient than others because the dynamic condensation matrix is updated repeatedly until the desired convergent values are obtained. However, using these methods simply for large structures causes expensive computational cost and even makes analyses intractable because of the limited computer storage. Therefore, the application of sub-structuring scheme is necessary. Because the large structures are subdivided into several (or more) sub-domains, the construction of dynamic condensation matrix does not require much computation cost in every iteration. This makes the present method much more efficient to compute the eigenpairs both in lower and intermediate modes. In Part I, iterated IRS method combined with sub-structuring scheme for undamped structures is presented. The validation of the proposed method and the evaluation of computational efficiency are demonstrated through the numerical examples.

Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (II) - Nonclassically Damped Structural Systems - (부구조화 기법을 연동한 반복적인 동적 축소법 (II) - 비비례 감쇠 구조 시스템 -)

  • Choi, Dong-Soo;Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.221-230
    • /
    • 2007
  • An iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for nonclassically damped structural systems is presented. For dynamic analysis of such systems, complex eigenproperties are required to incorporate properly the nonclassical damping effect. In complex structural systems, the equations of motion are written in the state space from. Thus, the number of degrees of freedom of the new equations of motion and the size of the associated eigenvalue problem required to obtain the complex eigenvalues and eigenvectors are doubled. Iterated IRS method is an efficient reduction technique because the eigenproperties obtained in each iteration step improve the condensation matrix in the next iteration step. However, although this reduction technique reduces the size of problem drastically, it is not efficient to apply this technique to a single domain finite element model with degrees of freedom over several thousands. Therefore, for a practical application of the reduction method, accompanying sub-structuring scheme is necessary. In the present study, iterated IRS method combined with sub-structuring scheme for nonclssically damped structures is developed. Numerical examples demonstrate the convergence and the efficiency of a newly developed scheme.

Study on the Structural System Condensation using Multi-level Sub-structuring Scheme in Large-scale Problems (대형 시스템에서의 다단계 부분구조 기법을 이용한 시스템 축소기법에 관한 연구)

  • Baek, Sung-Min;Kim, Hyun-Gi;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.356-361
    • /
    • 2008
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. And we have improved previous TLCS with combination of the iterated improved reduced system method (IIRS) to increase accuracy of the higher modes intermediate range. In this study, we apply previous improved TLCS to multi-level sub-structuring scheme. In the first step, the global system is recursively partitioned into a hierarchy of sub-domain. In second step, each uncoupled sub-domain is condensed by the improved TLCS. After assembly process of each reduced sub-eigenvalue problem, eigen-solution is calculated by Lanczos method (ARPACK). Finally, Numerical examples demonstrate performance of proposed method.

  • PDF

Model reduction and compensation of FE model for Hybrid modelling (혼합모델링을 위한 유한요소모델의 자유도 축소와 보상)

  • 이창호;이시복;이인갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.419-425
    • /
    • 1998
  • This paper presents a method of enhancing the accuracy of hybrid modelling that predicts dynamic characteristics of the coupled structure by synthesizing after FE analysis and vibration experimental analysis of the relevant individual substructure. Since most FE models in engineering problems are very large, dynamic analysis with the full FE model is costly. Frequency response function(FRF) synthesis after reducing the FE model can reduce this computational cost but introduce mode truncation error similarly in the case of considering only low-frequency mode after eigensolutions of the complete structure. This paper introduces a FRF of FE model for hybrid FRF synthesis, which is reduced by using IIRS methods and compensated through eigensolutions of the reduced model, and shows the effectiveness of the presented method.

  • PDF

Study on the efficient dynamic system condensation (동적 해석의 효율적 축소 기법에 관한 연구)

  • Baek, Sung-Min;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.631-636
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the, we proposed a two-level condensation scheme(TLCS) for the construction of a reduced system. In first step, the of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation, and next, the primary degrees of freedom is selected by sequential elimination from the degrees of freedom connected the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system(IIRS) to increase accuracy of higher modes intermediate range. Also, it possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Numerical examples demonstrate performance of proposed method.

  • PDF

Sensor placement for structural health monitoring of Canton Tower

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.313-329
    • /
    • 2012
  • A challenging issue in design and implementation of an effective structural health monitoring (SHM) system is to determine where a number of sensors are properly installed. In this paper, research on the optimal sensor placement (OSP) is carried out on the Canton Tower (formerly named Guangzhou New Television Tower) of 610 m high. To avoid the intensive computationally-demanding problem caused by tens of thousands of degrees of freedom (DOFs) involved in the dynamic analysis, the three dimension finite element (FE) model of the Canton Tower is first simplified to a system with less DOFs. Considering that the sensors can be physically arranged only in the translational DOFs of the structure, but not in the rotational DOFs, a new method of taking the horizontal DOF as the master DOF and rotational DOF as the slave DOF, and reducing the slave DOF by model reduction is proposed. The reduced model is obtained by IIRS method and compared with the models reduced by Guyan, Kuhar, and IRS methods. Finally, the OSP of the Canton Tower is obtained by a kind of dual-structure coding based generalized genetic algorithm (GGA).

Sensitivity-based finite element model updating with natural frequencies and zero frequencies for damped beam structures

  • Min, Cheon-Hong;Hong, Sup;Park, Soo-Yong;Park, Dong-Cheon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.904-921
    • /
    • 2014
  • The main objective of this paper is to propose a new Finite Element (FE) model updating technique for damped beam structures. The present method consists of a FE model updating, a Degree of Freedom (DOF) reduction method and a damping matrix identification method. In order to accomplish the goal of this study, first, a sensitivity-based FE model updating method using the natural frequencies and the zero frequencies is introduced. Second, an Iterated Improved Reduced System (IIRS) technique is employed to reduce the number of DOF of FE model. Third, a damping matrix is estimated using modal damping ratios identified by a curve-fitting method and modified matrices which are obtained through the model updating and the DOF reduction. The proposed FE model updating method is verified using a real cantilever beam attached damping material on one side. The updated result shows that the proposed method can lead to accurate model updating of damped structures.