• Title/Summary/Keyword: IGZO film

Search Result 196, Processing Time 0.033 seconds

Analysis and Improvement of Reliability in IGZO TFT for Next Generation Display

  • Fujii, Mami;Fuyuki, Takashi;Jung, Ji-Sim;Kwon, Jang-Yeon;Uraoka, Yukiharu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.326-329
    • /
    • 2009
  • We investigated the degradation of $In_2O_3-Ga_2O_3$-ZnO (IGZO) thin-film transistors (TFTs), which is promising device for driving circuits of nextgeneration displays. We performed the electronic stress test by applying gate and drain voltage. We discussed the degradation mechanism by thermal analysis and device simulation.

  • PDF

Investigation of contact resistance between metal electrodes and amorphous gallium indium zinc oxide (a-GIZO) thin-film transistors

  • Kim, Woong-Sun;Moon, Yeon-Keon;Lee, Sih;Kang, Byung-Woo;Kwon, Tae-Seok;Kim, Kyung-Taek;Park, Jong-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.546-549
    • /
    • 2009
  • In this paper, we investigated the effects of different source/drain (S/D) electrode materials in thin film transistors (TFTs) based on indium-gallium-zinc oxide (IGZO) semiconductor. A transfer length and effective resistances between S/D electrodes and amorphous IGZO thin-film transistors were examined. Intrinsic TFT parameters were extracted by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low drain voltage. The TFTs fabricated with Cu S/D electrodes showed the lowest contact resistance and transfer length indicating good ohmic characteristics, and good transfer characteristics with a field-effect mobility (${\mu}_{FE}$) of 10.0 $cm^2$/Vs.

  • PDF

Effect of oxygen on the threshold voltage of a-IGZO TFT

  • Chong, Eu-Gene;Chun, Yoon-Soo;Kim, Seung-Han;Lee, Sang-Yeol
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.539-542
    • /
    • 2011
  • Thin-film transistors (TFTs) are fabricated using an amorphous indium gallium zinc oxide (a-IGZO) channel layer by rf-magnetron sputtering. Oxygen partial pressure significantly changed the transfer characteristics of a-IGZO TFTs. Measurements performed on a-IGZO TFT show the change of threshold voltage in the transistor channel layer and electrical properties with varying $O_2$ ratios. The device performance is significantly affected by adjusting the $O_2$ ratio. This ratio is closely related with the modulation generation by reducing the localized trapping carriers and defect centers at the interface or in the channel layer.

Effect of electric field on asymmetric degradation in a-IGZO TFTs under positive bias stress (Positive bias stress하에서의 electric field가 a-IGZO TFT의 비대칭 열화에 미치는 영향 분석)

  • Lee, Da-Eun;Jeong, Chan-Yong;Jin, Xiao-Shi;Gwon, Hyeok-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.108-109
    • /
    • 2014
  • 본 논문에서는 gate와 drain bias stress하에서의 a-IGZO thin-film transistors (TFTs)의 비대칭 열화 메커니즘 분석을 진행하였다. Gate와 drain bias stress하에서의 a-IGZO TFT의 열화 현상은 conduction band edge 근처에 존재하는 oxygen vacancy-related donor-like trap의 발생으로 예상되며, TFT의 channel layer 내에서의 비대칭 열화현상은 source의 metal과 a-IGZO layer간의 contact에 전압이 인가되었을 경우, reverse-biased Schottky diode에 의한 source 쪽에서의 높은 electric field가 trap generation을 가속화시킴으로써 일어나는 것임을 확인할 수 있었다.

  • PDF

Optical and Electrical Properties of Oxide Multilayers

  • Han, Sangmin;Yu, Jiao Long;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.235-237
    • /
    • 2016
  • Oxide/metal/oxide (OMO) thin films were fabricated using amorphous indium-gallium-zinc-oxide (a-IGZO) and an Ag metal layer on a glass substrate at room temperature. The optical and electrical properties of the a-IGZO/Ag/a-IGZO samples changed systemically depending on the thickness of the Ag layer. The transmittance in the visible range tends to decrease as the Ag thickness increases while the resistivity, carrier concentration, and Hall mobility tend to improve. The a-IGZO/Ag (13 nm)/a-IGZO thin film with the optimum Ag thickness showed an average transmittance (Tav) of 71.7%, resistivity of 6.63 × 10−5 Ω·cm and Hall mobility of 15.22 cm2V−1s−1.

Effects of Plasma Treatment on the Reliability of a-IGZO TFT

  • Xin, Dongxu;Cui, Ziyang;Kim, Taeyong;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.85-89
    • /
    • 2021
  • High reliability thin film transistors are important factors for next-generation displays. The reliability of transparent a-IGZO semiconductors is being actively studied for display applications. A plasma treatment can fill the oxygen vacancies in the channel layer and the channel layer/insulating layer interface so that the device can work stably under a bias voltage. This paper studies the effect of plasma treatment on the performance of a-IGZO TFT devices. The influence of different plasma gases on the electrical parameters of device and its working reliability are reviewed. The article mentions argon, fluorine, hydrogen and several ways of processing in the atmosphere. Among these methods, F (fluorine) plasma treatment can maximize equipment reliability. It is expected that the presented results will form a basis for further research to improve the reliability of a-IGZO TFT.

Electrical Properties of a-IGZO Thin Films for Transparent TFTs

  • Bang, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.99-99
    • /
    • 2010
  • Recently, amorphous transparent oxide semiconductors (TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). The TOS TFTs using a-IGZO channel layers exhibit a high electron mobility, a smooth surface, a uniform deposition at a large area, a high optical transparency, a low-temperature fabrication. In spite of many advantages of the sputtering process such as better step coverage, good uniformity over large area, small shadow effect and good adhesion, there are not enough researches about characteristics of a-IGZO thin films. In this study, therefore, we focused on the electrical properties of a-IGZO thin films as a channel layer of TFTs. TFTs with the a-IGZO channel layers and Y2O3 gate insulators were fabricated. Source and drain layers were deposited using ITO target. TFTs were deposited on unheated non-alkali glass substrates ($5cm{\times}5cm$) with a sintered ceramic IGZO disc (3 inch $\varnothing$, 5mm t), Y2O3 disc (3 inch $\varnothing$, 5mm t) and ITO disc (3 inch $\varnothing$, 5mm t) as a target by magnetron sputtering method. The O2 gas was used as the reactive gas. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of a-IGZO thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

Photoelectron Spectroscopic Investigation of Ag and Au Deposited Amorphous In-Ga-Zn-O Thin Film Surface

  • Gang, Se-Jun;Baek, Jae-Yun;Sin, Hyeon-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.338.2-338.2
    • /
    • 2014
  • 투명반도체산화물은 우수한 광학적, 전기적 특성을 가지고 있기 때문에 차세대 박막트랜지스터의 채널층으로 각광을 받고 있다. 특히, 그 중에서도 a-IGZO를 이용한 TFT는 높은 가시광선 투과율(>80%)과 큰 전하이동도(>10 cm2/Vs) 를 갖는 등 좋은 광학적, 전기적 특성을 갖기 때문에 많은 연구가 이루어졌다. 여러 연구들에 의하면, a-IGZO TFT는 소스/드레인의 전극으로 어떤 물질을 사용하는지에 따라서 동작특성에 큰 영향을 미치는 것으로 알려져 있다. 일반적으로, a-IGZO 박막은 n형 반도체로써 일함수가 작은 금속과는 ohmic contact를 형성하고, 일함수가 큰 금속과는 Schottky barrier를 형성한다고 알려져 있다. 이와 관련된 대부분의 이전의 연구들에서는 각각의 전극물질에 따라 전기적인 특성변화에 초점을 맞춰서 연구하였다. 본 연구에서는 일함수가 작은 Ag와 일함수가 큰 Au를 a-IGZO의 박막 위에 얇게 증착하면서 이에 따른 고분해능 광전자분광(high-resolution x-ray photoelectron spectroscopy) 정보의 변화를 분석함으로써, 금속의 증착에 따른 금속층과 a-IGZO 표면 및 계면에서의 화학적 상태의 변화를 연구하였다. Au 4f, Ag 3d는 metallic property를 나타내기 이전까지는 lower binding energy(BE) 쪽으로 shift하였으며, In 3d 또한 lower BE 성분이 크게 증가하였다. O 1s, Ga 3d, Zn 3d들은 상대적으로 적은 변화를 나타내었는데, 이는 Ag, Au가 In과 상대적으로 더 많이 상호작용한다는 것을 의미한다. 본 발표에서는 이들 core level의 정보들과, 가전자대의 분광정보, 그리고 band bending의 정보가 제시될 것이며, 이 정보들은 metal 증착에 따른 contact 특성을 이해하는데 기여할 것으로 기대한다.

  • PDF

The Properties of ZnO:Ga,In(IGZO) Thin Films Prepared by RF Magnetron Sputtering (고주파 마그네트론 스퍼터링법으로 제조된 ZnO:Ga,In(IGZO) 박막의 특성)

  • Kim, Hyoung Min;Ma, Tae Young;Park, Ki Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.56-63
    • /
    • 2013
  • IGZO thin films have been prepared by RF magnetron sputtering. The structural, electrical and optical properties of the IGZO thin films have been investigated as a function of deposition condition. XRD analysis of IGZO thin films showed a typical crystallographic orientation with c-axis perpendicular regardless of deposition conditions. The carrier mobility, carrier concentration and resistivity of the IGZO films sputtered at 200 W, 1mTorr and $300^{\circ}C$ were $28.5cm^2/V{\cdot}sec$, $2.6{\times}10^{20}cm^3$, $8.8{\times}10^{-4}{\Omega}{\cdot}cm$ respectively. The optical transmittance were higher than 80% at visible region regardless of the deposition conditions under the experiments above, and specifically higher than 90% at wave length over 500 nm. The absorption edge was shifted to shorter wavelength with increase of carrier concentration.

Electrical properties of oxide thin film transistor with $ZrO_2$ gate dielectrics ($ZrO_2$ 게이트 절연막을 이용한 산화물 박막 트랜지스터의 전기적 특성)

  • Debnath, Pulak Chandra;Lee, Jae-Sang;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1334_1335
    • /
    • 2009
  • In this paper we have presented recent studies concerning the high performance oxide thin film transistor (TFT) with a-IGZO channel and $ZrO_2$ gate dielectrics. The a-IGZO TFT is fully fabricated at room-temperature without any thermal treatments. The $ZrO_2$ is one of the most promising high-k materials with high capacitance originated from the high dielectric constant. The a-IGZO TFT with $ZrO_2$ shows high performance exhibiting high field effect mobility of $39.82\;cm^2$/Vs and high on-current of 2.52 mA at 10V.

  • PDF