• Title/Summary/Keyword: IGF_1

Search Result 604, Processing Time 0.029 seconds

The Effect of the IGF-I treated Gingival and Periodontal Ligament Fibroblast on Osteoblasts (IGF-I으로 처리한 치은 및 치주인대 섬유모세포가 골모세포에 미치는 영향)

  • Kim, Mi-Jeong;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.589-600
    • /
    • 2001
  • Insulin-like growth factor I (IGF-I) has the local tissue regulating actions. In bone, IGF-I increases the replication of osteoblastic lineage, probably preosteoblasts, and enhances osteoblastic collagen synthesis and matrix composition rates. The purpose of this study was to investigate the local regulatory effect of IGF-I on periodontium totally, both in an autocrine and paracrine manner. To examine the effect of IGF-I directly on osteoblast (OB) of test rats, and indirectlv on OB via periodontal ligament fibroblast (PDLF), and the effect of gingival fibroblast (GF) on OB via cellular paracrine manner for the understanding of humoral action of adjacent tissue, GF and PDLF were obtained from male Sprague-Dawley rats of six to eight weeks of age. OB was obtained iron frontal and parietal calvarial bone of Sprague-Dawley 21day-old-fetus. After each tell was Incubated 24 hours, for collecting conditioned medium, different concentrations of IGF-I (1,10,100 ng/ml,1ml/well) was adding in the GF, PDLF cells, and the supernatant from these cultures was put into the primary OB culture with $1{\times}10^4$cell/ml/well. The experimental group was divided into six groups control OB, IGF-I treated OB, OB culture with conditioned medium from PDLF, OB culture with conditioned medium from IGF-I treated PDLF, OB culture with conditioned medium from GF, OB culture with conditioned medium from IGF-I treated GF. After final IGF-I treatment, OB was Incubated for 24 hours, and alkaline phosphatase activity assay, BMP expression, cell proliferation measurement using MTT assay, total protein measurement, Collagen synthesis assay using western blot, and examination of bone nodule synthesis were done. Alkaline phosphatase expressions were increased in the group of PDLF-IGF-I supernatant treatment. Direct IGF-I treatment with concentrations of 100ng/m1 showed increased viable tell number measured by MTT assay. And IGF-I treatment did not increase total protein amount. The entire experimental group showed BMP2, 4 expression in western blot, and there was no significant difference between control and experimental groups. These results suggested that supernatant from PDLF effects on increasing cellular activities of OB regardless of IGF-I, and at high concentration, IGF-I increases OB tell proliferation.

  • PDF

Alteration of Growth Factor Expression after Acute Ischemic Renal Injury (급성 허혈성 신손상 후 여러 성장인자 발현의 변화)

  • Koe, Yang Sim;Lee, Soo Yeon;Kim, Won;Cho, Soo Chul;Hwang, Pyoung Han;Kim, Jung Soo;Lee, Dae-Yeol
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.687-694
    • /
    • 2003
  • Purpose : Regeneration and repair after ischemic renal injury appears to be modulated by circulating or locally produced growth factors. This study examined the changes of serum insulin like growth factor(IGF-I) and renal expression of IGF-I and II, vascular endothelial growth factor(VEGF), transforming growth $factor-{\beta}$($TGF-{\beta}$), and connective tissue growth factor(CTGF) during the active regeneration period after acute ischemic injury. Methods : Sera and kidney tissue samples(whole kidney, cortex, outer medullae and inner medullae) were obtained before and after one, three, five and seven days of 40 minutes bilateral renal pedicle clamping. Acute renal failure was assessed by measuring the concentration of serum creatinine. Serum IGF-I level was measured by radioimmunoassay. The mRNA expression in kidney was measured by RT-PCR. The distribution of IGF-I and CTGF was detected by immunohistochemistry. Resuts : Serum IGF-I concentration after one day following acute ischemic renal injury was significantly decreased compared to preischemic value. The mRNA levels of IGF-I, IGF-II, $TGF-{\beta}1$ and VEGF in whole kidney were temporally decreased on day one of ischemic injury. IGF-I and IGF-II expressions in outer medullae were significantly decreased on day one after ischemic injury. $TGF-{\beta}1$, CTGF and VEGF expressions were markedly decreased in medullae after one day of ischemic injury compared to other kidney sections. IGF-I was markedly decreased in cortical tubules on day one of uremic rat. CTGF was markedly increased on tubule within three days of ischemic injury. Conclusion : These findings suggest that IGFs, $TGF-{\beta}1$ and CTGF may involve in the pathogenesis or the recovery from acute ischemic renal injury.

Role of cAMP, EGF, IGF-I and Protein Phosphorylation in Mammary Development I. Effect of EGF, IGF-I and Photoreactive Cyclic AMP on DNA Synthesis of Mammary Epithelial Cell (유선발달에 있어서 cAMP, EGF, IGF-I 및 단백질 인산화 작용의 역할 I. EGF, IGF-I 및 Photoreactive Cyclic AMP가 유선상피세포의 DNA합성에 미치는 효과)

  • 여인서;박춘근;홍병주
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.1
    • /
    • pp.49-56
    • /
    • 1993
  • Mouse mammary epithelial cells(NMuMG) were plated onto 24 well phates(100,000 cells/well), in DMEM supplemented with 10% fetal calf serum. After serum starvation for 24 hours, EGF)0~100ng/ml) was added simultaneously with IGF-I(10ng/ml), 1$\mu$M photoreactive cAMP(4,5-dimethoxy-2-nitrobenzyl adenosine-3',5' cyclic monophosphate, DMNB) or IGF-I plus DMNB. After 2 hours, the cells were expposed to UV light(300nm, 3 second pulse0 in order to activate DMNB which induces a rapid transient increase in intracellular cAMP upon UV irradiation. DNA synthesis was estimated as incorporation of 3H-thymidine into DNA(1 hour pulse with 1$\mu$Ci/ml, 18~19 hours after UV exposure). Without IGF-I or DMNB, EGF(10 or 100ng/ml) increased DNA synthesis from 8,362 dpm/well in control to 16,345 or 18,684 dpm/well with EGF(pooled SE=1,239 dpm/well, P<0.05). IGF-I or IGF-I plus DMNB alone increased DNA synthesis from 8,362 dpm/well in control to 17,307 or 20,427 dpm/well, respectively(P<0.05). Addition of IGF-I, DMNB or IGF-I plus DMNB into 0~100ng/ml EGF did not significantly change the shape of dose response curve of EGF alone. In other experiment, EGF or IGF-I plus DMNB into 10ng/ml EGF group exhibited interaction effect in DNAsynthesis [EGF(10ng/ml)=18,497; IGF-I+EGF=22,837; DMNB+EGF=20,658 ; IGF-I+DMNB+EGF=29,658, pooled SE=1,055, P<0.05]. These results indicate that simultaneous activation of EGF, IGF-I and intracellular cAMP interact in DNA synthesis of mouse mammary epithelial cells.

  • PDF

Pronephros Induction by Combined-dose of Activin A and IGF-1, and High-dose Effect of IGF-1 in Xenopus Animal Cap Assay (Xenopus 동물극의 분리배양에서 Activin A와 IGF-1의 복합처리에 의한 전신의 분화와 IGF-I 고농도의 효과)

  • 정선우;진정효;윤춘식
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.479-485
    • /
    • 1998
  • The induction of nephric duct from Xenopus presumptive ectoderm(animal cap) was studied and the high-dose ef-fect of IGF-1 was investigated. Activin A induce various organs from cultured animal cap explants and the effects are time and dose-dependent. On the induction of nephric duct, the combined-dose of activin A and retinoic acid was very efficient method in reference study. In present study, we used IGF-1 as well as activin A as a combined growth factor. The concentration ranges of growth factors were activin A l00ng/ml an IGF-1 0-500ng/m1. Explants were cultured in combined solution for 3days to the normal embryo arrives at st. 43. In general, when the explant was cultured in high concentration(l00ng/ml) of activin A, it was destroyed, however, nephric duct and other tis-sues were differentiated by adding IGF-1. In addition, eye induction by adding IGF-1 500ng/ml to activin A 1- 100 ng/ml solution was studied. The low concentration of activin A(1ng/ml) have blood-like cell inducing effect and the explant was balloon-shaped, however, the high dose combination with IGF-1 extended the range of eye inductive concentration of activin A.

  • PDF

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF

The Effects of 1,25- Dihydroxyvitamin $D_3$ on Expression of IGF-I Gene and Cellular Proliferation in MC3T3-E1 Cells (골아세포의 IGF-I 유전자 발현 및 세포증식에 대한 1,25-dihydroxyvitamin $D_3$의 영향)

  • Choi, Hee-Dong;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.39-52
    • /
    • 2000
  • Polypeptide growth factor belong to a class of potent biologic mediator which regulate cell differentiation, proliferation, migration and metabolism. 1,25-dihydroxyvitamin $D_3$ decrease cell proliferation, and stimulate alkaline phosphatase activity which express in osteoblast during cell differentiation period. IGF-I is known to stimulate cell proliferation and differentiation too. 1,25-dihydroxyvitamin $D_3$ is known to increase IGF-I binding sites and IGF binding protein which inhibite the effect of IGF. The purpose of this study is to evaluate potential role of IGF-I as mediator that control the action of 1,25-dihydroxyvitamin $D_3$. MC3T3-E1 cell were seeded $5{\times}10^5/ml$ at 100mm culture plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 5% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ added. Total mRNA was extracted at 0, 6, 24, 48, 72 hour. PRPCR method was programed for the detection of IGF-I mRNA. In the both groups of 1,25-dihydroxy vitamin $D_3$ treated and control, alternative splicing form of IGF-I, IGF-IA and IGF-IB were expressed. In the 1,25-dihydroxyvitamin $D_3$ treated group, IGF-I mRNA expression was matained until 24 hour, there after expression was decresed. MC3T3-E1 cell were seeded $2.5{\times}10^4/ml$ at 24well plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 3% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ and 10 ng/ml IGF-I were added separately or together. Cell were cultured for 1 and 3 days, $2{\mu}Ci/ml\;[^3H]$ -thymidine was added for the last 24h of culture of each days. ${[^3H]}$-thymidine incorporation in to DNA was measured and expressed counter per minute(CPM). DNA synthetic activity was significantly decreased by 1,25-dihydroxyvitamin $D_3$ both at 1 day and 3 day, and in the combination group of 1,25-dihydroxyvitamin $D_3$ and IGF-I, DNA synthetic activity was also decreased both at 1 day and 3 days. IGF-I did not affect the DNA synthetic activity compared to control group both at 1 day and 3 day. From the above results, 1,25-dihydroxyvitamin $D_3$ was potent inhibitor of cell proliferaton in MC3T3-E1 cells. It assumed that the effect of 1,25-dihydroxyvitamin $D_3$ on osteoblast proliferation may be mediated in part by decreased level of IGF-I.

  • PDF

Insulin-like Growth Factor-I Induces FATP1 Expression in C2C12 Myotubes (C2C12 myotube에서 Insulin-like growth factor-I 이 FATP1 발현에 미치는 영향)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1284-1290
    • /
    • 2014
  • Fatty acid transporter protein 1 (FATP1) is highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism. However, the influence of insulin-like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on FATP1 in skeletal muscle cells has not been demonstrated. To investigate the effect of IGF-I on FATP1 and the expression of the IGFBP5 protein, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I at different time points. The results showed that IGF-I increased FATP1 and IGFBP5 protein expression in a time-dependent manner. To determine whether this induction of FATP1 by the IGF-I treatment was regulated pretranslationally, the mRNA level of FATP1 was measured by real-time quantitative PCR. The IGF-I treatment resulted in very rapid induction of the FATP1 mRNA transcript in C2C12 myotubes. FATP1 mRNA increased 169% and 132% after 24 and 48 h of the IGF-I treatment, respectively, and it returned to control levels after 72 h of the treatment, suggesting that the FATP1 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. This is the first evidence that IGF-I can regulate the expression of FATP1. In conclusion, IGF-I induced rapid transcriptional modification of the FATP1 gene in C2C12 skeletal muscle cells and had modulating effects on fatty acid uptake proteins and oxidative proteins.

Activation of IL-1β, IGF-1 and IGF-2 in Injured Rat Skeletal Muscle by Low Power He-Ne IR Laser and Electrical Stimulation (저출력레이저와 전기자극에 의한 골격근 손상 흰쥐의 IL-1β, IGF-1, IGF-2 활성)

  • Kim, Jong-Soon;Rho, Min-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.251-262
    • /
    • 2008
  • In this study we investigated the effects of physical therapeutic intervention through electromyography, ultrasonographic imaging and changes of the IL-$1{\beta}$, IGF-1 and IGF-2 in skeletal muscle of rats injured experimentally. The twenty Sprague-Dawley male rats were randomly divided into the 4 groups: a normal, a control, a low power laser and a neuromuscular electrical stimulation group. Abnormal spontaneous activities had not been shown, both in normal and skeletal muscle injured rats. The maximum diameter of the calf muscle was significantly increased in the low power laser and neuromuscular electrical stimulation groups compared with control group. The level of the serum IL-$1{\beta}$ was more decreased in the low power laser and neuromuscular electrical stimulation groups than that of control group. The activation level of the IGF-1 and the IGF-2 were significantly higher in the control, low power laser and neuromuscular electrical stimulation groups than that of normal group. However, there was no statistically significant difference among the control, low power laser and neuromuscular electrical stimulation groups.

Effects of IGF-I Rich Fraction from Bovine Colostral Whey on Immune Activity of Mouse In Vitro (젖소 초유로부터 분리한 Insulin-like Growth Factor-1 분획이 In Vitro에서 마우스의 면역 활성에 미치는 영향)

  • Hwang Hyung-A;Yang Hee-Jin;Lee Soo-Won
    • Food Science of Animal Resources
    • /
    • v.26 no.1
    • /
    • pp.113-120
    • /
    • 2006
  • Insulin-like growth factor-I(IGF-I) rich fraction, which was obtained molecules ranged between 30 and 1 kDa, was fractionated by ultrafiltration from bovine colostral whey. IGF-I rich fraction was confirmed by SDS-PACE and western blotting and then the quantity of IGF-I was measured by sandwich ELISA. ICF-I concentration in IGF-I rich fraction was 10 ng/mg proteins. IGF-I rich fraction, standard IGF-I and colostral whey weie treated to murine peritoneal macrophages. And then we experimented that effect of immune activity on macrophage and splenocyte. As a result, in group treated with IGF-I rich fraction $1{mu}g/mL$, production of interleukin-6 and nitric oxide were 9.85 ng and $17.17{\mu}M$ and production of phagocytosis, tumor necrosis factor-${\alpha}\;and\;H_{2}O_{2}$ were 78.3, 34.5 and 6% compared to the control group. In splenocyte immune response, B cell and T cell proliferation and NK cell activity were 103, 126 and 22.2% in group treated with IGF-I rich fraction $1{\mu}g/mL$ to compared to the control, respectively.

Correlation between chromosome abnormalities and genomic imprinting in developing human - 1) Frequent biallelic expression of insulin-like growth factor II (IGF2) in gynogenetic Ovarian Teratomas: Uncoupling of H19 and IGF2 imprinting

  • Choi, Bo-Hwa;Lee, In-Hwan;Chun, Hyo-Jin;Kang, Shin-Sung;Chang, Sung-Ik
    • Journal of Genetic Medicine
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 1998
  • Human uniparental gestations such as gynogenetic ovarian teratomas provide a model to evaluate the integrity of parent-specific gene expression - i.e. imprinting - in the absence of a complementary parental genetic contribution. The few imprinted genes characterized so far include the insulin-like growth factor-2 gene (IGF2) coding for a fetal growth factor and H19 gene whose normal function is unknown but it is likely to act as an mRNA. IGF2 is expressed by the paternal allele and H19 by the maternal allele. This reciprocal expression is quite interesting because both H19 and IGF2 genes are located close to each other on chromosome 11p15.5. In situ RNA hybridization analysis has shown variable expression of the H19 and IGF2 alleles according to the tissue origin in 11 teratomas. Especially, Skin, derivative of ectoderm, is expressed conspicuously. We examined imprinting of H19 and IGF2 in teratomas using PCR and RT-PCR of exonic polymorphism. H19 and IGF2 transcript could be expressed either biallelically or monoallelically in the teratomas. Biallelic expression (i.e., loss of imprinting) of IGF2 occurred in 5 out of 6 mature teratomas and 1 out of 1 immature teratoma. Biallelic expression of H19 occurred in 4 out of 10 mature teratomas and 1 out of 1 immature teratoma. Expression levels of H19 and IGF2 transcript using the semi-quantitative RT-PCR had no relation between monoallelic and biallelic expression. Moreover, IGF2 biallelic expression did not affect allele-specificity or levels of H19 expression. These results demonstrate that both genes, H19 and IGF2, can be imprinted, expressed and regulated independently and individually of each other in ovarian teratoma.

  • PDF