• Title/Summary/Keyword: IEEE 802.6

Search Result 496, Processing Time 0.029 seconds

The Design of a High-Performance RC4 Cipher Hardware using Clusters (클러스터를 이용한 고성능 RC4 암호화 하드웨어 설계)

  • Lee, Kyu-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.875-880
    • /
    • 2019
  • A RC4 stream cipher is widely used for security applications such as IEEE 802.11 WEP, IEEE 802.11i TKIP and so on, because it can be simply implemented to dedicated circuits and achieve a high-speed encryption. RC4 is also used for systems with limited resources like IoT, but there are performance limitations. RC4 consists of two stages, KSA and PRGA. KSA performs initialization and randomization of S-box and K-box and PRGA produces cipher texts using the randomized S-box. In this paper, we initialize the S-box and K-box in the randomization of the KSA stage to reduce the initialization delay. In the randomization, we use clusters to process swap operation between elements of S-box in parallel and can generate two cipher texts per clock. The proposed RC4 cipher hardware can initialize S-box and K-box without any delay and achieves about 2 times to 6 times improvement in KSA randomization and key stream generation.

End-to-end Delay Guarantee in IEEE 802.1 TSN with Non-work conserving scheduler (비작업보존 스케줄러를 갖는 IEEE 802.1 TSN에서 단대단 지연시간 보장)

  • Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.121-126
    • /
    • 2018
  • IEEE 802.1 TSN TG is developing standards for end-to-end delay bounds and zero packet loss based on Ethernet technology. We focus on packet forwarding techniques. TSN packet forwarding techniques can be classified into Synchronous and Asynchronous framework. Synchronous approach allocates fixed time period for a class, yet is complex for large networks. Asynchronous approach provides delay guarantee by regulator-scheduler pair, yet is unnecessarily complex, too. We propose network components for TSN Asynchronous architecture, which remove the complexity of maintaining flow state for regulation decisions. Despite such a simplicity, the proposed architecture satisfies the TSN's delay requirements provided the limited high priority traffic's maximum packet length.

A Seamless Lawful Interception Architecture for Mobile Users in IEEE 802.16e Networks

  • Lee, Myoung-Rak;Lee, Taek;Yoon, Byung-Sik;Kim, Hyo-Gon;In, Hoh Peter
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.626-633
    • /
    • 2009
  • Lawful interception (LI) involves legally accessing private communication such as telephone calls or email messages. Numerous countries have been drafting and enacting laws concerning the LI procedures. With the proliferation of portable Internet services such as the IEEE 802.16e wireless mobile networks, surveillance over illegal users is an emerging technical issue in LI. The evermigrating users and their changing IP's make it harder to provide support for seamless LI procedures on 802.16e networks. Few studies, however, on seamless LI support have been conducted on the 802.16e mobile networks environments. Proposed in this paper are a seamless LI architecture and algorithms for the 802.16e networks. The simulation results demonstrate that the proposed architecture improves recall rates in intercepting mobile user, when compared to the existing LI architectures.

Study of Optimum Parameters for Improving QoS in Wireless LAN (무선랜 QoS의 성능향상을 위한 최적 파라미터에 관한 연구)

  • Jin, Hyunjoon
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.96-103
    • /
    • 2013
  • Since multimedia data takes large part of realtime transmission in wireless communication environments such as IEEE 802.11, QoS issues became one of the important problems with network performance. 802.11e MAC provides differentiated services based on priority schemes to solve existing 802.11 MAC problems. The TXOP is an important factor with the priority to improve network performance and QoS because it defines the time duration in which multiple frames can be transferred at one time for each station. In this paper, therefore frame sizes, TXOP Limit, and Priority values in accordance with the number of stations are experimented and derived for best network performance and QoS. Using 802.11e standard parameters, simulation results show the best throughput when the number of stations is 5 and TXOP Limit value is 6.016ms. For fairness, the best result is achieved at 3.008ms of TXOP Limit value and 15-31 of CW(Contention Window) that is lower priority than CW 7-15.

Fragmentation Management Method for 6LoWPAN (6LoWPAN에서 단편화 관리 기법)

  • Seo, Hyun-Gon;Han, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.130-138
    • /
    • 2009
  • 6LoWPAN is IPv6 packets transmission technology at Sensor network over the IEEE 802.15.4 Standard MAC and Physical layer. Adaptation layer between IP layer and MAC layer performs fragmentation and reassembly of packet for transmit IPv6 packets. RFC4944, IETF 6LoWPAN WG standard document define packet fragmentation and reassembly. In this paper, we propose the IRM(Immediate Retransmission Method) and SRM(Selective Retransmission Method) to manage packet fragmentation and reassembly at 6LoWPAN. Each time destination receives a fragmented packet, it sends Ack message to the source node on IRM. However, on SRM, the destination node receives all fragmented packet, it sends Ack message or Nak message to the source node. In this case, Nak message include the dropped packet number. To compare the performance of the proposed schemes, we develop a simulator using C++. The result of simulation shows the proposed schemes provider better performance than RFC4944 standard scheme.

Overhead Reduction Methods in Communication between 6LoWPAN and External Node (6LoWPAN 노드와 외부 노드의 통신 시에 오버헤드 감소 방법)

  • Choi, Dae-In;Enkhzul, Doopalam;Park, Jong-Tak;Kahng, Hyun-K.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.437-442
    • /
    • 2011
  • As an Internet Engineering Task Force (IETF) Working Group, 6LoWPAN is standardizing the IPv6 packet transfer technology in accordance with IEEE 802.15.4. It has completed two Request for Comments (RFC) documents, one of which, RFC 4944, addresses fragmentation, reassembly, and header compression technologies. In this paper, a communication mechanism is proposed to provide efficient communication between 6LoWPAN and external nodes. In this mechanism, the gateway between 6LoWPAN and external networks serves as the proxy gateway between nodes. The simulation was conducted using QualNet to compare the performance of the proposed mechanism and the existing RFC 4944 method. The comparative analysis of the proposed mechanism and the existing method showed that the proposed method performed better.