• Title/Summary/Keyword: IEEE 802.15.4k

Search Result 359, Processing Time 0.023 seconds

Multi-channel QoS scheduling algorithm in IEEE 802.15.4e (IEEE 802.15.4e 멀티 채널 QoS 스케줄링 알고리즘)

  • Wu, Hyuk;Kim, Hak-Kyu;Lee, Dong-Jun;Kang, Ho-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.764-773
    • /
    • 2011
  • IEEE 802.15.4 is a standard for LWPAN based on TDMA. IEEE 802.15.4 has not been used widely because of restrictions on the QoS, scalability, and reliability. IEEE 802.15.4 utilizes GTS for one-hop QoS transmission. However GTS is not an effective method to satisfy QoS in multi-hop environments. Currently IEEE 802.15.4e, an extended version of IEEE 802.15.4 MAC sub-layer, is being developed to satisfy more diverse performance requirements than IEEE 802.15.4. IEEE 802.15.4e provides muti-hop QoS transmission functionality and uses multiple frequency channels. In this paper, a multi-channel TDMA scheduling scheme is proposed to satisfy end-to-end transmission delay in IEEE 802.15.4e. The performance of the proposed scheme is evaluated using simulation.

Coexistence Mechanism between IEEE 802.15.4 and IEEE 802.11 : ACROS (IEEE 802.15.4 와 IEEE 802.11의 공존 방법 : ACROS)

  • Shin, S.Y.;Lee, J.W.;Kwon, W.H.;Shin, Y.H.;Kim, Y.H.;Kim, J.J.;Kim, Yu-Shin
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.74-84
    • /
    • 2005
  • In this paper, a new coexistence mechanism between IEEE 802.15.4 and IEEE 802.11, ACROS (Active Channel Reservation for coexistence), is proposed. The key idea of ACROS is to reserve the channel for IEEE 802.15.4 transmission. During the reservation, IEEE 802.11 transmissions cannot be occurred. Request-to-send/clear-to-send mechanism of IEEE 802.11 is used to reserve channel. The proposed ACROS mechanism is implemented into PC based prototype. By the experiments, the $e{\pm}ciency$ of ACROS is proved.

  • PDF

Performance Analysis of IEEE 802.15.4/ZigBee System in Various Channel Environments (다양한 채널 환경에서 IEEE 802.15.4/ZigBee 시스템의 성능 분석)

  • Moon, Sangmi;Kim, Bora;Malik, Saransh;Kim, Youngil;Yeo, Kunmin;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.22-32
    • /
    • 2013
  • Wireless Sensor Network(WSN) has attracted great interest recently and the necessity of ZigBee has appeared to standardize and apply the upper layer specification based on the IEEE 802.15.4 standard specification in industrial field. Currently, there are many studies about the IEEE 802.15.4/ZigBee communication channel. And it is subject of interest to analyze the performance in various channel environments. In this paper, we propose channel models through the analysis of the IEEE 802.15.4 radio wave propagation characteristics in various channel environments. Also, we have analyzed the performance of the IEEE 802.15.4/ZigBee for the standard of physical layer of 2.4GHz band in each channel environments.

Performance Analysis of IEEE 802.11b under IEEE 802.15.4 Environment (IEEE 802.15.4 환경 하에서의 IEEE 802.11b의 성능 해석)

  • Yoon, Dae-Kil;Shin, Soo-Young;Kwon, Wook-Hyun;Kim, Jung-Jun;Kim, Young-Ho;Shin, Young-Hee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-17
    • /
    • 2005
  • Coexistence of different wireless systems that share the 2.4 GHz ISM frequency band is becoming one of the most important issue. This paper presents a model of the interference that IEEE 802.11b affected by IEEE 802.15.4. The packet error rate (PER) of IEEE 802.11b under the interference of IEEE 802.15.4 is analyzed. The PER is obtained by using the bit error rate (BER) and the collision time. Further, this paper suggests a packet length to reduce the effect of the IEEE 802.15.4 interference and obtain a maximum throughput of the IEEE 802.11b. The analytical results are validated using simulation.

  • PDF

Performance Analysis of IEEE 802.11b under IEEE 802.15.4 Environment (IEEE 802.15.4 환경 하에서의 IEEE 802.11b의 성능 해석)

  • Yoon, Dae-Kil;Shin, Soo-Young;Kwon, Wook-Hyun;Kim, Jung-Jun;Kim, Young-Ho;Shin, Young-Hee
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.85-91
    • /
    • 2005
  • Coexistence of different wireless systems that share the 2.4 GHz ISM frequency band is becoming one of the most important issue. This paper presents a model of the interference that IEEE 802.11b may experience because of IEEE 802.15.4. The packet error rate (PER) of IEEE 802.11b under the interference of IEEE 802.15.4 is analyzed. The PER is obtained by using the bit error rate (BER) and the collision time. The analytical results are validated using simulation.

  • PDF

Bridge between IEEE 802.15.4 and IEC 61850 using Raspberry Pi (라즈베리파이를 이용한 IEEE 802.15.4와 IEC 61850 간의 브리지)

  • Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.181-186
    • /
    • 2017
  • IEC 61850 is a standard for power utility automation. Using IEC 61850 that uses ethernet may consume more costs for the automation than its value in small distribution substations. Thus, less expense and installation cost are required for the automation of small distribution substations. This study used inexpensive and easy-to-install IEEE 802.15.4 and implemented a bridge between IEC 61850 and IEEE 802.15.4, using Raspberry Pi to connect the existing IEC 61850. Using IEEE 1588, IEC 61850 traffic performances were evaluated, such as SV, GOOSE and MMS. Analyzing IEC 61850 requirements and performance evaluation results, the scope of application of IEEE 802.15.4 was decided.

Performance Evaluation on the Power Consumption of IEEE802.15.4e TSCH (IEEE802.15.4e TSCH의 소비전력에 대한 성능평가)

  • Kim, Dongwon;Youn, Mi-Hee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.37-41
    • /
    • 2018
  • In this paper, we evaluate the power consumption of IEEE802.15.4e TSCH which uses the specific link scheduling scheme proposed in reference[1]. And we also compares it with the power consumption of conventional single channel IEEE802.15.4. The power consumption of IEEE802.15.4e TSCH is smaller than the conventional one under the any conditions of traffic. The reasons can be explained as the followings. Firstly, TSCH does not have backoff time because of using the collision free link scheduling. Secondly, there is the timing difference of MAC offset parameter between TSCH and conventional IEEE802.15.4 Lastly, the devices in TSCH mode sleep during the time slots which are not assigned to itself.

Worst-case Delay Analysis of Time-Triggered 802.15.4 for Wireless Industrial Environments

  • Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.205-212
    • /
    • 2017
  • This paper focuses on worst-case delay analysis of the time-triggered IEEE 802.15.4 protocol to satisfy the industrial quality-of-service (QoS) performance. The IEEE 802.15.4 protocol is considered to be unsuitable for industrial networks because its medium access control method is contention-based CSMA/CA, which exhibits unstable performance with an unbounded delay distribution under heavy traffic. To avoid these limitations, this paper presents a time-triggered version of the nonbeacon-enabled network of IEEE 802.15.4 that relies on a time division multiplexing access (TDMA) method implemented in the application layer without any modification of specification. The timing analysis of this time-triggered IEEE 802.15.4 was executed, and the worst-case transmission delay was calculated. Based on this analysis, the time-triggered IEEE 802.15.4 is a promising alternative for wireless industrial networking.

On the Impact of Channel Sensing Methods to IEEE 802.15.4 Performances under IEEE 802.11b Interference

  • Shin, Soo-Young;Park, Hong-Seong
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, the impact of channel sensing methods to IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed. Two different channel sensing methods, energy detection and carrier sense, are considered. An average transmission delay, a throughput, and a power drain rate are used as performance measures. Those performance measures of IEEE 802.15.4 under the interference of IEEE 802.11b are analyzed mathematically. The simulation results are shown to validate the analytic results.

Improving BER Performance of IEEE 802.15.4 with Alamouti Scheme in MIMO System (MIMO 시스템에서 ALAMOUTI 기법과 IEEE 802.15.4의 BER 성능 개선)

  • Halim, Eddy Hartono;Shin, Soo-Yong
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes a technique for applying space-time block coding (STBC) - Alamouti scheme on Multiple Inputs Multiple Output (MIMO) system based on IEEE 802.15.4 standard. It is applied to IEEE 802.15.4 standard in $2{\times}1$ MISO and $2{\times}2$ MIMO systems. Simulation is performed using Matlab and the results are compared with conventional IEEE 802.15.4 approaches, Single Input Single Output (SISO) system and switching diversity $1{\times}2$ Single Input Multiple Output (SIMO) system. The simulations show that applied Alamouti scheme gave better Bit Error Rate (BER) performance compared to combined IEEE 802.15.4 with switching diversity and SISO system.