• Title/Summary/Keyword: IDR

Search Result 69, Processing Time 0.024 seconds

The Impact of Oil Palm Farming on Household Income and Expenditure in Indonesia

  • RAMADHANA, Arga;AHMED, Ferdoushi;THONGRAK, Sutonya
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.539-547
    • /
    • 2021
  • Indonesia is the largest exporter of palm oil in the world. The province of West Sulawesi is the second-largest palm oil producer in Indonesia. This study examines the contributions of oil palm farming to total household income and the factors affecting the household expenditure of oil palm smallholders in West Sulawesi, Indonesia. This study also identifies the problems related to oil palm production in the province. Primary data were collected from 174 oil palm smallholders using a standardized questionnaire in the Lariang sub-district, Pasangkayu, West Sulawesi, Indonesia. Several statistical tools were employed to analyze the data. The study estimated the average household income of the smallholders at IDR 30,417,441 per year, out of which 85,8% comes from oil palm farming, followed by non-oil palm farming (8%) and off farming (6.2%). On the other hand, the average household expenditure was found to be IDR 23,476,069 per year which 66% goes for food consumption and 34% for non-food consumption. The findings revealed that household expenditure of the oil palm smallholders is strongly and positively affected by a number of factors such as household income, education level, family size, earning members in the family, number of children attending school, and amount of credit taken by the household.

Optimum location of second outrigger in RC core walls subjected to NF earthquakes

  • Beiraghi, Hamid;Hedayati, Mansooreh
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.671-690
    • /
    • 2021
  • Seismic responses of RC core wall with two outriggers are investigated in this study. In the models analyzed here, one of the outriggers is fixed at the top of the building and the second is placed at different levels along the height of the system. Each of the systems resulting from the placement of the outrigger at different locations is designed according to the prescriptive codes. The location of the outrigger changes along the height. Linear design of all the structures is accomplished by using prescriptive codes. Buckling restrained braces (BRBs) are used in the outriggers and forward directivity near fault and far fault earthquake record sets are used at maximum considered earthquake (MCE) level. Results from nonlinear time history analysis demonstrate that BRB outriggers can change the seismic responses like force distribution and deformation demand of the RC core-walls over the height and lead to the new plastic hinge arrangement over the core-wall height. Plasticity extension in the RC core wall occurs at the base as well as adjacent to the outrigger levels. Considering the maximum inter-story drift ratio (IDR) demand as an engineering parameter, the best location for the second outrigger is at 0.75H, in which the maximum IDR at the region upper the second outrigger level is approximately equal to the corresponding value in the lower region.

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

Correlation between seismic damage index and structural performance for Indian code-conforming RC frame buildings

  • Tushar K. Das;Pallab Das;Satyabrata Choudhury
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.209-226
    • /
    • 2024
  • The susceptibility of Reinforced Concrete (RC) buildings to earthquake-induced damage is a critical concern, primarily attributed to their inadequate seismic performance. The existing earthquake-resistant design code of India prescribes guidelines to minimize seismic damage but does not provide any means for evaluating the actual seismic performance and damage. To ascertain the seismic performance of the structures quantitatively, it is crucial to classify damage into measurable damage states. Damage Index (DI) acts as an important tool for this purpose. Among various procedures for computation of DI, the modified Park and Ang Damage Index appears to be highly accurate. However, the major drawback of this method is that it is lengthy and time-consuming. On the other hand, structural performances can be evaluated using various performance parameters such as interstory drift ratio (IDR), inelastic deformation, etc., as described in FEMA-356 and ASCE-41 17. The present study explores the correlation between seismic DI and structural performance in RC frame buildings designed according to IS code. Sixteen building models, incorporating diverse configurations, are examined using nonlinear static and time history analyses. A simplified equation is developed by regression analysis to predict DI based on IDR, offering a computationally efficient alternative. Validation tests are done to confirm the equation's accuracy. Furthermore, a unified damage scale integrating DI and seismic performance is also proposed for seismic damage evaluation of buildings designed by IS code.

In silico High-Throughput Screening by Hierarchical Chemical DB Search by 3D Pharmacophore Model

  • Shin, Jae-Min
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.181-182
    • /
    • 2002
  • Recentadvancesin '-omics ' technologies enable us to discover more diverse disease- relevant target proteins, which encourages us to find out more target-specific novel lead compounds as new drug candidates. Therefore, high-throughput screening (HTS) becomes an essential tool in this area. Among many HTS tools, in silico HTS is a very fast and cost-effective tool to try to derive a new lead compound for any new targets, especially when the target protein structures are known or readily modeled. (omitted)

  • PDF

Capacity Spectrum Method Based on Inelastic Displacement Ratio (비탄성변위비를 이용한 능력 스펙트럼법)

  • Han, Sang-Whan;Bae, Mun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.69-80
    • /
    • 2008
  • In this study, improved capacity spectrum method (CSM) is proposed. The method can account for higher mode contribution to the seismic response of MDOF systems. The CSM has been conveniently used for determining maximum roof displacement using both demand spectrum and capacity curve of equivalent SDOF system. Unlike the conventional CSM, the maximum roof displacement is determined without iteration using inelastic displacement ratio and R factor calculated from demand spectrum and capacity curve. Three moment resisting steel frames of 3-, 9- and 20-stories are considered to test the accuracy of the proposed method. Nonlinear response history analysis (NL-RHA) for three frames is also conducted, which is considered as an exact solution. SAC LA 10/50 and 2/50 sets of ground motions are used. Moreover, this study estimates maximum story drift ratios (IDR) using ATC-40 CSM and N2-method and compared with those from the proposed method and NL-RHA. It shows that the proposed CSM estimates the maximum IDR accurately better than the previous methods.

Dynamic Full-Scalability-Conversion in SVC (스케일러블 비디오 코딩에서의 실시간 스케일러빌리티 변환)

  • Lee, Dong-Su;Bae, Tae-Meon;Ro, Yong-Man
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.60-70
    • /
    • 2006
  • Currently, Scalable Video Coding (SVC) is being standardized. By using scalability of SVC, QoS managed video streaming service is enabled in heterogeneous networks even with only one original bitstream. But current SVC is insufficient to dynamic video conversion for the scalability, thereby the adaptation of bitrate to meet a fluctuating network condition is limited. In this paper, we propose dynamic full-scalability conversion method for QoS adaptive video streaming in H.264/AVC SVC. To accomplish full scalability dynamic conversion, we propose corresponding bitstream extraction, encoding and decoding schemes. On the encoder, we newly insert the IDR NAL to solve the problems of spatial scalability conversion. On the extractor, we analyze the SVC bitstream to get the information which enable dynamic extraction. By using this information, real time extraction is achieved. Finally, we develop the decoder so that it can manage changing bitrate to support real time full-scalability. The experimental results showed that dynamic full-scalability conversion was verified and it was necessary for time varying network condition.

An R-lambda Model based Rate Control Scheme to Support Parallel GOP Coding for Real-Time HEVC Software Encoders (HEVC 실시간 소프트웨어 인코더를 위한 GOP 병렬 부호화를 지원하는 R-lambda 모델 기반의 율 제어 방법)

  • Kim, Dae Eun;Chang, Yongjun;Kim, Munchurl;Lim, Woong;Kim, Huiyong;Seok, Jinwuk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.107-109
    • /
    • 2016
  • 본 논문에서는 4K UHD 입력 영상을 실시간으로 부호화하기 위해 적용되는 GOP 단위 또는 IDR 주기 단위의 병렬 부호화 구조를 지원하도록 R-${\lambda}$ 모델 기반의 율 제어 방법을 개선하는 비트 분배(bit allocation) 방법을 제안한다. GOP 단위 또는 IDR 주기 단위의 병렬 부호화기 내에서 율 제어기를 작동시키는 경우, 계층적 B 구조에서 같은 계층에 있는 프레임 간에는 상호간에 얼마만큼의 비트를 소모 하였는지에 대한 정보를 공유 할 수 없기 때문에 기존의 비트 분배 방식으로는 비트 예산(bit budget) 관리가 불가능하다. 이를 해결하기 위해 본 논문에서는, 기존의 R-${\lambda}$ 모델 기반 율 제어 방법을 개선하여 부호화 순서에 의한 시간 순서 방향의 비트 예산 갱신 기반 비트 분배하던 방식으로부터, GOP 마다 비트를 할당한 후 계층적 B 구조에서의 계층이 깊어지는 방향으로 비트 예산을 갱신하여 비트를 분배하는 방식으로 율 배분 방식을 개선하였다. 실험 결과를 통해 R-${\lambda}$ 모델 기반 율 제어의 기존 비트 분배 방식보다 제안 방법에 의한 목표 비트 율 달성 오차가 감소함을 확인하였다.

  • PDF

Clinical Utility of Liver Stiffness Measurements on Magnetic Resonance Elastrography in Patients with Hepatocellular Carcinoma Treated with Radiofrequency Ablation

  • Kim, Ji Eun;Lee, Jeong Min;Lee, Dong Ho;Chang, Won;Yoon, Jeong Hee;Han, Joon Goo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.231-240
    • /
    • 2016
  • Purpose: To determine whether liver stiffness (LS) measured by magnetic resonance elastography (MRE) can predict the outcome of radiofrequency ablation (RFA) in hepatocellular carcinoma (HCC) patients. Materials and Methods: A total of 107 patients with Child-Pugh class A liver function who were treated with RFA for single HCC and who had undergone a gradient-echo MRE within 6 months before RFA were included. We evaluated the relationship between the LS values and the ablation volume, local tumor progression (LTP), and intrahepatic distant recurrence (IDR). We also constructed receiver operating characteristic (ROC) curves to examine the role of LS in predicting liver function deterioration, which was defined as an increase of Child-Pugh score by one point or more at 1 year after RFA. Results: There was no significant correlation between LS and ablation volume, and neither time to LTP nor IDR was associated with LS. Among the 66 patients who did not have recurrence 1 year after RFA, 5 patients (7.6%) developed liver function deterioration. A high LS value was significantly associated with development of liver function deterioration after RFA and the area under the ROC curve was 0.764 (95% CI 0.598-0.929, P = 0.003). Conclusion: LS measured by MRE could not predict ablation volume and tumor recurrence. However, high LS values were significantly associated with development of liver function deterioration.

Implementation Strategy Based on the Classification of Depreciation Models (감가상각모형의 유형화에 기초한 적용방안)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.217-230
    • /
    • 2014
  • The purpose of this study is to develop the Generalized Depreciation Function (GDF) and Winfrey Depreciation Function (WDF) by reviewing methods for the depreciation accountings. The Depreciation Accounting Models (DAM), including straight-line model, declining-balance model, sum-of-the-year-digit model and sinking fund model presented in this paper, are reclassified into the charging pattern of increasing type, decreasing type and constant type. This paper also discusses the development of the GDFs based on convex type, concave type and constant type according to the demand pattern of product, frequency of plant usage, deterioration of time, relative inadequacy, Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) of the Total Productive Maintenance (TPM). The WDFs presented in this paper depict a sudden degradation of plant performance by measuring the change of TPM activity at the midpoint of useful life of asset. The WDFs are classified into left-modal type, symmetrical type and right-modal type by varying the value of skewness and kurtosis. Moreover, three increasing patterns, such as convex, concave and linear types, are used in this paper to present the distinct identification of WFDs by using Instantaneous Depreciation Rate (IDR) in terms of Performance Depreciation Function (PDF) and Depreciation Density Function (DDF). In order to have better understanding of depreciation models, the numerical examples are used for evaluating the Net Operating Less Adjusted Tax (NOPLAT) and Economic Value Added (EVA). It is concluded that the depreciation models showing a large dispersion of EVA require the adjustment of NOPLAT and Invested Capital (IC) based on the objective cash basis and net operating activity for reducing the variation of EVA.