• 제목/요약/키워드: ICP etcher

검색결과 36건 처리시간 0.036초

Dry Etching of Ru Electrodes using O2/Cl2 Inductively Coupled Plasmas

  • Kim, Hyoun Woo
    • Corrosion Science and Technology
    • /
    • 제2권5호
    • /
    • pp.238-242
    • /
    • 2003
  • The characteristics of Ru etching using $O_2/Cl_2$ plasmas were investigated by employing inductively coupled plasma (ICP) etcher. The changes of Ru etch rate, Ru to $SiO_2$ etch selectivity and Ru electrode etching slope with the gas flow ratio, bias power, total gas flow rate, and source power were scrutinized. A high etching slope (${\sim}86^{\circ}$) and a smooth surface after etching was attained using $O_2/Cl_2$ inductively coupled plasma.

A Destruction Pattern Analysis of a Turbo-Molecular Pump According to the Foreline Clamp Damage in an ICP Dry Etcher for 300 mm Wafers

  • Jeong, Jinyong;Lee, Intaek;Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • 제24권2호
    • /
    • pp.27-32
    • /
    • 2015
  • We analyzed the destruction patterns of a turbo-molecular pump (TMP) resulting from its sudden exposure of a foreline to the atmospheric pressure due to a destruction of the foreline connecting clamp of an ICP dry etcher for 300 mm wafers during high-vacuum operation ($5{\times}10^{-6}$ Torr). Unlike in the case of view port's breakage, the TMP's rotor module was crashed inside the chamber. The primary damage resulted from the collision of the blades and stators, and the secondary damage resulted from the breaking of the rotor - driving shaft assembly. The fixing screws of the rotor and axial shaft were bent and broken when the TMP controller output the maximum current even after the crash event. Electrical power consumption analysis of the TMP power controller confirmed it. The stress distributions were analyzed by a finite element method using CFD-ACE+ multi physics software. Rotating inertia of each parts and kinetic energies were calculated as well. 68% of the rotational kinetic energy is deposited by the rotor - shaft module.

범용성 유도결합 플라즈마 식각장비를 이용한 깊은 실리콘 식각 (The Development of Deep Silicon Etch Process with Conventional Inductively Coupled Plasma (ICP) Etcher)

  • 조수범;박세근;오범환
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.701-707
    • /
    • 2004
  • High aspect ratio silicon structure through deep silicon etching process have become indispensable for advanced MEMS applications. In this paper, we present the results of modified Bosch process to obtain anisotropic silicon structure with conventional Inductively Coupled Plasma (ICP) etcher instead of the expensive Bosch process systems. In modified Bosch process, etching step ($SFsub6$) / sidewall passivation ($Csub4Fsub8$) step time is much longer than commercialized Bosch scheme and process transition time is introduced between process steps to improve gas switching and RF power delivery efficiency. To optimize process parameters, etching ($SFsub6$) / sidewall passivation ($Csub4Fsub8$) time and ion energy effects on etching profile was investigated. Etch profile strongly depends on the period of etch / passivation and ion energy. Furthermore, substrate temperature during etching process was found to be an important parameter determining etching profile. Test structures with different pattern size have been etched for the comparison of the aspect ratio dependent etch rate and the formation of silicon grass. At optimized process condition, micropatterns etched with modified Bosch process showed nearly vertical sidewall and no silicon grass formation with etch rate of 1.2 ${\mu}{\textrm}{m}$/ min and the size of scallop of 250 nm.

병렬 플라즈마 소스를 이용한 마이크로 LED 소자 제작용 GaN 식각 공정 시스템 개발 (GaN Etch Process System using Parallel Plasma Source for Micro LED Chip Fabrication)

  • 손보성;공대영;이영웅;김희진;박시현
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.32-38
    • /
    • 2021
  • We developed an inductively coupled plasma (ICP) etcher for GaN etching using a parallel plasma electrode source with a multifunctional chuck matched to it in order for the low power consumption and low process cost in comparison with the conventional ICP system with a helical-type plasma electrode source. The optimization process condition using it for the micro light-emitting diode (µ-LED) chip fabrication was established, which is an ICP RF power of 300 W, a chuck power of 200 W, a BCl3/Cl2 gas ratio of 3:2. Under this condition, the mesa structure with the etch depth over 1 ㎛ and the etch angle over 75° and also with no etching residue was obtained for the µ-LED chip. The developed ICP showed the improved values on the process pressure, the etch selectivity, the etch depth uniformity, the etch angle profile and the substrate temperature uniformity in comparison with the commercial ICP. The µ-LED chip fabricated using the developed ICP showed the similar or improved characteristics in the L-I-V measurements compared with the one fabricated using the conventional ICP method

Hbr/O2 유도결합 플라즈마를 이용한 폴리실리콘 건식식각 (Dry Etching of Polysilicon in Hbr/O2 Inductively Coupled Plasmas)

  • 범성진;송오성;이혜영;김종준
    • 한국전기전자재료학회논문지
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2004
  • Dry etch characteristics of polysilicon with HBr/O$_2$ inductively coupled plasma (ICP) have been investigated. We determined etch late, uniformity, etch profiles, and selectivity with analyzing the cross-sectional scanning electron microscopy images obtained from top, center, bottom, right, and left positions. The etch rate of polysilicon was about 2500 $\AA$/min, which meets with the mass production for devices. The wafer level etch uniformity was within $\pm$5 %. Etch profile showed 90$^{\circ}$ slopes without notches. The selectivity over photoresist was between 2:1∼4.5:1, depending on $O_2$ flow rate. The HBr-ICP etching showed higher PR selectivity, and sharper profile than the conventional Cl$_2$-RIE.

Numerical Simulation: Effects of Gas Flow and Rf Current Direction on Plasma Uniformity in an ICP Dry Etcher

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.189-194
    • /
    • 2017
  • Effects of gas injection scheme and rf driving current configuration in a dual turn inductively coupled plasma (ICP) system were analyzed by 3D numerical simulation using CFD-ACE+. Injected gases from a tunable gas nozzle system (TGN) having 12 horizontal and 12 vertical nozzles showed different paths to the pumping surface. The maximum velocity from the nozzle reached Mach 2.2 with 2.2 Pa of Ar. More than half of the injected gases from the right side of the TGN were found to go to the pump without touching the wafer surface by massless particle tracing method. Gases from the vertical nozzle with 45 degree slanted angle soared up to the hottest region beneath the ceramic lid between the inner and the outer rf turn of the antenna. Under reversed driving current configuration, the highest rf power absorption region were separated into the two inner islands and the four peaked donut region.