• Title/Summary/Keyword: ICP Monitoring

Search Result 102, Processing Time 0.03 seconds

Improvement of Measurement Precisions for Uranium Isotopes at Ultra Trace Levels by Modification of the Sample Introduction System in MC-ICP-MS

  • Park, Ranhee;Lim, Sang Ho;Han, Sun-Ho;Lee, Min Young;Park, Jinkyu;Lee, Chi-Gyu;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.7 no.2
    • /
    • pp.50-54
    • /
    • 2016
  • Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is currently used in our laboratory for isotopic and quantitative analyses of nuclear materials at ultra-trace levels in environmental swipe samples, which is a very useful for monitoring undeclared nuclear activities. In this study, to improve measurement precisions of uranium isotopes at ultratrace levels, we adopted a desolvating nebulizer system (Aridus-II, CETAC., USA), which can improve signal sensitivity and reduce formation of uranium hydride. A peristaltic pump was combined with Aridus-II in the sample introduction system of MC-ICP-MS to reduce long-term signal fluctuations by maintaining a constant flow rate of the sample solution. The signal sensitivity in the presence of Aridus-II was improved more than 10-fold and the formation ratio of UH/U decreased by 16- to 17- fold compared to a normal spray chamber. Long-term signal fluctuations were significantly reduced by using the peristaltic pump. Detailed optimizations and evaluations with uranium standards are also discussed in this paper.

Diagnosis of $BCl_3$ and $BCl_3$/Ar Plasmas with an Optical Emission Spectroscopy during High Density Planar Inductively Coupled Dry Etching (평판형 고밀도 유도결합 건식 식각시 Optical Emission Spectroscopy를 이용한 $BCl_3$$BCl_3$/Ar 플라즈마의 분석)

  • Cho, Guan-Sik;Wantae Lim;Inkyoo Baek;Seungryul Yoo;Park, Hojin;Lee, Jewon;Kuksan Cho;S. J. Pearton
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.88-88
    • /
    • 2003
  • Optical Emission Spectroscopy(OES) is a very important technology for real-time monitoring of plasma in a reactor during dry etching process. OES technology is non-invasive to the plasma process. It can be used to collect information on excitation and recombination between electrons and ions in the plasma. It also helps easily diagnose plasma intensity and monitor end-point during plasma etch processing. We studied high density planar inductively coupled BCl$_3$ and BCl$_3$/Ar plasma with an OES as a function of processing pressure, RIE chuck power, ICP source power and gas composition. The scan range of wavelength used was from 400 nm to 1000 nm. It was found that OES peak Intensity was a strong function of ICP source power and processing pressure, while it was almost independent on RIE chuck power in BCl$_3$-based planar ICP processes. It was also worthwhile to note that increase of processing pressure reduced negatively self-induced dc bias. The case was reverse for RIE chuck power. ICP power and gas composition hardly had influence on do bias. We will report OES results of high density planar inductively coupled BCl$_3$ and BCl$_3$/Ar Plasma in detail in this presentation.

  • PDF

Analysis of Trace Level and Correlation of Lead in the Plasma of Field Workers and General Public by ICP-MS (유도결합플라즈마 질량분석법에 의한 납 취급 근로자와 일반인의 혈장 중 납 분석 및 상관성 분석)

  • Lee, Sung-Bae;Yang, Jeong-Sun;Choi, Sung-Bong;Kim, Nam-Soo;Lee, Byung-Kook;Shin, Ho-Sang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.65-74
    • /
    • 2013
  • Objectives: This study attempted to develop a method to measure ultra-trace lead concentrations in plasma using Inductively Coupled Plasma Mass Spectrometry(ICP-MS) and to test whether plasma lead can be used as a biomarker for the biological monitoring of exposure to lead. Methods: Lead concentrations in 160 plasma samples of field workers and 42 plasma samples from the control group were measured by ICP-MS. Blood zinc protophorphyrin(ZPP) concentrations and urinary ${\delta}$-aminolevulinic acid${\delta}-ALA$) were measured for correlation analysis with plasma lead. Results: The mean lead level in the plasma of the workers exposed to lead at work were 786.1 ng/L. Plasma lead levels were not correlated with blood ZPP or urinary ${\delta}-ALA$ concentrations. Otherwise, plasma lead levels showed a good correlation coefficient of 0.400 with blood lead levels, and their correlation coefficient had a better value of 0.552 for the non-smoking and drinking group. In the general population group which was not exposed to lead in the workplace and was considered the control group, the mean concentration of plasma lead was 123.1 ng/L. The plasma lead levels for the general population group showed a good correlation coefficient of 0.520 with blood ZPP and urinary ${\delta}-ALA$ concentrations.

The separation of arsenic metabolites in urine by high performance liquid chromatography-inductively coupled plasma-mass spectrometry

  • Chung, Jin-Yong;Lim, Hyoun-Ju;Kim, Young-Jin;Song, Ki-Hoon;Kim, Byoung-Gwon;Hong, Young-Seoub
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.18.1-18.9
    • /
    • 2014
  • Objectives The purpose of this study was to determine a separation method for each arsenic metabolite in urine by using a high performance liquid chromatography (HPLC)-inductively coupled plasma-mass spectrometer (ICP-MS). Methods Separation of the arsenic metabolites was conducted in urine by using a polymeric anion-exchange (Hamilton PRP X-100, $4.6mm{\times}150mm$, $5{\mu}m$) column on Agilent Technologies 1260 Infinity LC system coupled to Agilent Technologies 7700 series ICP/MS equipment using argon as the plasma gas. Results All five important arsenic metabolites in urine were separated within 16 minutes in the order of arsenobetaine, arsenite, dimethylarsinate, monomethylarsonate and arsenate with detection limits ranging from 0.15 to $0.27{\mu}g/L$ ($40{\mu}L$ injection). We used G-EQUAS No. 52, the German external quality assessment scheme and standard reference material 2669, National Institute of Standard and Technology, to validate our analyses. Conclusions The method for separation of arsenic metabolites in urine was established by using HPLC-ICP-MS. This method contributes to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies for arsenic exposure in South Korea.

Comparison Between Performance of Wireless MEMS Sensors and an ICP Sensor With Earthquake-Input Ground Motions (지진 입력 진동대를 이용한 무선 MEMS 센서와 ICP 가속도계의 성능 비교)

  • Mapungwana, S.T.;Lee, Jong-Ho;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.63-72
    • /
    • 2019
  • Wireless sensors are more favorable in measuring structural response compared to conventional sensors in terms of them being easier to use with no issues with cables and them being considerably cheaper. Previous tests have been conducted to analyze the performance of MEMS (Micro Electro Mechanical Systems) sensor in sinusoidal excitation tests. This paper analyzes the performance of in-built MEMS sensors in devices by comparing with an ICP sensor as the reference. Earthquake input amplitude excitation in shaking table tests was done. Results show that MEMS sensors are more accurate in measuring higher input amplitude measurements which range from 100gal to 250gal than at lower input amplitudes which range from 10gal to 50gal. This confirms the results obtained in previous sinusoidal tests. It was also seen that natural frequency results have lower error values which range from 0% to 3.92% in comparison to the response spectra results. This also confirms that in-built MEMS sensors in mobile devices are good at estimating natural frequency of structures. In addition, it was also seen that earthquake input amplitudes with more frequency contents (Gyeongju) had considerably higher error values than Pohang excitation tests which has less frequency contents.

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

Retardation Effect and Mobility of a Heavy Metal in a Sandy Soil (사질토양에서의 중금속의 지연효과와 이동성)

  • Kim, Dong-Ju;Baek, Doo-Sung
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.155-161
    • /
    • 1998
  • Retardation effect of heavy metals in soils caused by adsorption onto the surfaces of solids particles is well known phenomenon. In this study, we investigated the retardation effect on the mobility of a Zn in a sandy soil by conducting batch and column tests. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used NaCl and ZnCl$_2$ solutions with the concentration of 10 g/L as a tracer, and injected them respectively into the inlet boundary of the soil sample as a square pulse type, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and ICP-AES. The batch test was conducted based on the standard procedure of equilibrating fine fractions collected from the soil with various initial ZnCl$_2$ concentrations, and analysis of Zn ions in the equilibrated solutions using ICP-AES. The results of column test showed that i) the peak concentration of ZnCl$_2$analyzed by ICP was far less than that of either NaCl or bulk electrical conductivity and ⅱ) travel times of peak concentrations for two tracers were more less identical. The relatively low concentration of Zn can be explained by ion exchange between Zn and other cations, and possible precipitation of Zn in the form of Zn(OH)$_2$due to high pH range (7.0∼7.9) of the effluent. The identical result of travel times of peak concentrations indicates that the retardation effect is not present in the soil. The only way to describe the prominent decrease of Zn ion was to introduce decay or sink coefficient in the CDE model to account for irreversible decrease of Zn ions in the aqueous phase.

  • PDF

Bioanalytical method validation for determination of arsenic speciation in dog plasma using HPLC-ICP/MS (Dog 혈장 중 HPLC-ICP/MS를 이용한 비소 화학종 분석법 검증)

  • Kim, Jong-Hwan;Kwon, Young Sang;Shin, Min-Chul;Kim, Su Jong;Seo, Jong-Su
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.234-241
    • /
    • 2016
  • The approach presented in this article refers to the bioanalytical method validation for the detection and quantitative determination of arsenic species including arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in dog plasma by high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP/MS). The arsenic species were separated using an agilent As speciation column by a mobile phase of 2 mM sodium phosphate monobasic, 0.2 mM ethylenediaminetetraacetic acid disodium salt dehydrate, 10 mM sodium acetate, 3 mM sodium nitrate and 1 % ethyl alcohol at pH 11 (adjusted with 1M NaOH). The method validation experiment was obtained selectivity, linearity, accuracy, precision, matrix effect, recovery, system suitability, dilution integrity and various stabilities. All calibration curves showed good linearity (R2>0.999) within test ranges. The lower limit of quantitation (LLOQ) was 5 ng/mL for As(III), As(V) and DMA, and 20 ng/mL for MMA. The system suitability and dilution values were within 6.5 % and 7.7 %. Subsequently, the developed and validated HPLC-ICP/MS method was also successfully applied to determine the arsenic speciation in dog plasma samples, and the recoveries for the spiked samples were in the range of 91.5–102.2 %. Therefore, this method could be applied to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies in biological samples.

Evaluation of the Possession of Measurement and Analytical Instruments among Domestic Work Environment Monitoring Service Providers (I) (국내 작업환경측정기관의 측정 및 분석장비 보유실태에 대한 고찰 (I))

  • Jang, Jae-Kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.250-260
    • /
    • 2013
  • Objectives: The aim of this study is to analyze the current status of the possession of measurement and analytical instruments among work environment monitoring organizations that have been designated by the Ministry of Employment and Labor (MoEL) in Korea. Methods: Data for measurement and analytical instruments were gathered by inspectors who had been assigned by the Korea Occupational Safety and Health Agency (KOSHA) and MoEL during the evaluation program for designated work environment monitoring service providers in 2012. Data for 11 monitoring instruments and nine analytical instruments were collected from 108 organizations. Basic data such as the type of service provides and the size of employment were also recorded by the inspector. Results: The total number of personal air samplers including high and low flow rates operated in Korea was 5,418, with average of 50.2. Average operation number of noise dosimeters was 35.0, while 3,780 dosimeters were used in 108 work environment monitoring organizations. There were 10,488 monitoring instruments in total. All service providers possessed at least one AAS and GC in their analytical laboratory. Total number of HPLC/MS was five, followed by ICP/MS of seven, with an average of 0.07. Conclusions: Based on the data, domestic work environment monitoring service providers possessed relatively reasonable measurement and analytical instruments. Nearly all instruments had been imported from advanced countries such as USA, UK and Japan. Periodic gathering of data on these instruments may help maintain good workplace monitoring results and the health of workers at the sites.

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF