• Title/Summary/Keyword: ICI self-cancellation

Search Result 15, Processing Time 0.019 seconds

A Study on the Bandwidth Efficient Self-Cancellation Scheme of Interchannel Interference (ICI) For OFDM Transmission Systems

  • Kim, Gi-Rae;Chung, Yeon-Do
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.162-165
    • /
    • 2006
  • This paper presents a bandwidth efficient self-cancellation scheme for interchannel interference (ICI) in OFDM transmission systems. Conventional self-cancellation schemes provide an excellent cancellation capability of ICI for relatively low frequency offsets. However, this capability is achieved at the expense of bandwidth efficiency and thus a higher modulation level is often used to compensate for desired throughput. By applying a partial differential coding (PDC) to the transmit data prior to the ICI self-cancellation, bandwidth efficiency is greatly improved by a factor of 2, while maintaining a string of data (+1, -1) alternately for the ICI. self-cancellation in OFDM systems. Computer simulations show that the performance of the proposed scheme is comparable to the conventional self-cancellation scheme with slight performance degradation for relatively lower frequency offsets.

A Design of OFDM Signal for Reducing the ICI Caused by Phase Noise (위상잡음에 의한 ICI를 제거하기 위한 OFDM 신호 설계)

  • Li Yingshan;Hieu Nguyen Thanh;Ryu Heung-Gyoon;Jeong Young-Hoo;Hahm Young-Kown
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.319-326
    • /
    • 2005
  • In the multi-carrier OFDM communication system for the high data rate transmission, the ICI caused by phase noise of transceiver local oscillator may degrade the system performance seriously. In this paper, a new ICI self-cancellation scheme using data-conjugate method is proposed to reduce the ICI caused by phase noise effectively. Then, the CPE, ICI and CIR are derived by the phase noise linear approximation method. Besides, to analyze the efficiency of system performance improvement, the proposed method is compared with the original OFDM and the conventional ICI self-cancellation scheme using data-conversion method. As results, the performance degradation caused by ICI can be mitigated effectively in the OFDM system with ICI self-cancellation scheme, and more performance improvement can be achieved by the proposed ICI self-cancellation scheme using data-conjugate method than the conventional ICI self-cancellation scheme using data-conversion method when phase noise exists.

Turbo MIMO-OFDM Receiver in Time-Varying Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Jhang, Yi-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3704-3724
    • /
    • 2018
  • This paper proposes an advanced turbo receiver with joint inter-carrier interference (ICI) self cancellation and channel equalization for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over rapidly time-varying channel environment. The ICI caused by impairment of local oscillators and carrier frequency offset (CFO) is the major problem for MIMO-OFDM communication systems. The existing schemes (conjugate cancellation (CC) and phase rotated conjugate cancellation (PRCC)) that deal with the ICI cancellation and channel equalization can't provide satisfactory performance over time-varying channels. In term of error rate performance and low computational complexity, ICI self cancellation is the best choice. So, this paper proposes a turbo receiver to deal with the problem of joint ICI self cancellation and channel equalization. We employ the adaptive phase rotations in the receiver to effectively track the CFO variations without feeding back the CFO estimate to the transmitter as required in traditional existing scheme. We also give some simulations to verify the proposed scheme. The proposed schene outperforms the existing schemes.

An Efficient ICI Self-Cancellation Method with Frequency Offset and Phase Noise in OPDM Systems (OFDM 시스템에서 주파수 오차와 위상 잡음에 의한 ICI를 제거하기 위한 효율적인 자가상쇄 기법)

  • Park, Jeong-Hwan;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.155-163
    • /
    • 2009
  • OFDM System is a promising transmission technique due to its spectral efficiency But, a major disadvantage of the OFDM system is its sensitivity to frequency offset and phase noise that makes intercarrier interference (ICI), which degrades the system performance severely The ICI self-cancellation method has a good performance with frequency offset or phase noise. This paper proposed the N/2 spacing data-conjugate method that works well in large frequency offset and phase noise (normalized frequency offset=0.2-0.4, phase noise standard deviation=about lodes). Also, an efficiency ICI cancellation method using pilot was proposed. Simulation results confirm that performance of the proposed scheme is better than conventional schemes.

Efficient ICI Self-Cancellation Scheme for OFDM Systems

  • Kim, Kyung-Hwa;Seo, Bangwon
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.537-544
    • /
    • 2014
  • In this paper, we present a new inter-carrier interference (ICI) self-cancellation scheme - namely, ISC scheme - for orthogonal frequency-division multiplexing systems to reduce the ICI generated from phase noise (PHN) and residual frequency offset (RFO). The proposed scheme comprises a new ICI cancellation mapping (ICM) scheme at the transmitter and an appropriate method of combining the received signals at the receiver. In the proposed scheme, the transmitted signal is transformed into a real signal through the new ICM using the real property of the transmitted signal; the fast-varying PHN and RFO are estimated and compensated. Therefore, the ICI caused by fast-varying PHN and RFO is significantly suppressed. We also derive the carrier-to-interference power ratio (CIR) of the proposed scheme by using the symmetric conjugate property of the ICI weighting function and then compare it with those of conventional schemes. Through simulation results, we show that the proposed ISC scheme has a higher CIR and better bit error rate performance than the conventional schemes.

Design and Performance Evaluation of the DFT-Spread OFDM Communication System for Phase Noise Compensation and PAPR Reduction (위상 잡음 보상과 PAPR 저감을 고려한 DFT-Spread OFDM 통신 시스템 설계와 성능 평가)

  • Li Ying-Shan;Kim Nam-Il;Kim Sang-Woo;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.638-647
    • /
    • 2006
  • Recently, the DFT-Spread OFDM has been studied for the PAPR reduction. However, the DFT-Spread OFDM produces more ICI and SCI problems than OFDM because phase offset mismatch of the DFT spreading code results from the random phase noise in the oscillator. In this paper, at first, phase noise influence on the DFT-Spread OFDM system is theoretically analyzed in terms of the BER performance. Then, the conventional ICI self-cancellation methods are discussed and two kinds of ICI self-cancellation methods are newly proposed. Lastly, a new DFT-Spread OFDM system which selectively adopts the ICI self-cancellation technique is proposed to resolve the interference problem and PAPR reduction simultaneously. Proposednew DFT-Spread OFDM system can minimize performance degradation caused by phase noise, and still maintain the low PAPR property. Among the studied methods, DFT-Spread OFDM with data-conjugate method or newly proposed symmetric data-conjugate method show the significant performance improvements, compared with the DFT-Spread OFDM without ICI self-cancellation schemes. The data-conjugate method is slightly better than symmetric data-conjugate method.

Performance Analysis of ICI reduction in OFDM system (OFDM시스템에서 ICI 감소 기술의 성능해석)

  • Jang, Eun-Young;Byon, Kun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1150-1155
    • /
    • 2007
  • Orthogonal Frequency Division Multiplexing (OFDM) is an emerging multi-carrier modulation scheme, which has been adopted for several wireless standards such as IEEE 802.11a and HiperLAN2. A well-known problem of OFDM is its sensitivity to frequency offset between the transmitted and received carrier frequencies. This frequency offset introduces inter-carrier interference (ICI) in the OFDM symbol. This paper investigates three methods for combating the effects of ICI: ICI self-cancellation (SC), maximum likelihood (ML) estimation, and extended Kalman filter (EKF) method. These three methods are compared in terms of bit error rate performance.

An Interchannel Interference Self-Cancellation Scheme for the Orthogonal Frequency Division Multiplexing System (직교 주파수분할다중화 시스템을 위한 채널간간섭 자기소거법)

  • Chen, Huijie;Kang, Seog-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.729-736
    • /
    • 2018
  • Due to the frequency offset, interchannel interference (ICI) is occurred in the received symbols of the orthogonal frequency division multiplexing (OFDM) systems. The ICI self-cancellation (ICI-SC) technique appropriately adjusts the subchannel signal assignment of the OFDM symbols, thereby canceling the interference caused by other subchannels. The conventional adjacent symbol repetition (ASR) method can reduce the interference caused by remote subchannels. However, it may not mitigate or even increases the ICI produced by some nearest subchannels. To solve the problem, a new ASR based ICI-SC technique is proposed and its performance is analyzed in this paper. Here, a t-parameter obtained by the interference coefficients of 3 successive subchannels is applied. As a result, the proposed method has the same capability to reduce the influence of remote subchannels. However, it can reduce the ICI caused by the nearest subchannels significantly.

Performance Analysis of OFDM Communication System Cancelling the ICI by Data Conversion Method (ICI를 Data Conversion 방식으로 상쇄하는 OFDM 통신시스템과 성능분석)

  • 허근재;이영선;유흥균;정두영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1191-1197
    • /
    • 2003
  • In the multi-carrier OFDM communication system, the inter-carrier-interference(ICI) produced by phase noise in the transceiver local oscillator makes a severe influence on the system performance. In this paper, a new ICI self-cancellation scheme in the data-conversion type is proposed to reduce effectively the ICI. Also, the common phase error(CPE), ICI and carrier to interference power ratio(CIR) are found by the linear approximation of the phase noise. Then, the proposed method is compared with the conventional OFDM to analyze the efficiency of system performance improvement. When the number of subcarriers is 64, there are respectively the SNR gain of 0.6 ㏈ in the phase noise variance of 0.3 with QPSK and 1.5 ㏈ in the phase noise variance of 0.1 with 16 QAM at BER=10$\^$-3/. As a result, the performance degradation by ICI can be effectively lowered in the proposed system with ICI self. cancellation scheme, compared with the conventional OFDM system.

Multiple Frequency Offsets Cancellation Scheme Based on Alamouti Coded OFDM for Distributed Antenna Systems in Selective Fading Channel (선택적 감쇄환경에서 분산안테나 간 주파수 오차 환경에 강인한 알라무티부호화 직교주파수분할다중방식 기반 간섭 제거기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1039-1044
    • /
    • 2013
  • We propose a cancellation algorithm based on Alamouti coded OFDM to mitigate ICI due to Frequency Offset (FO) between distributed antennas in the frequency selective fading channel. In the cancellation algorithm, the interference signal is estimated by using the initial detection symbol and then the estimated interference signal is subtracted from the received signal. As the accuracy of initial symbol increases, ICI cancellation becomes more significant. Therefore, the accuracy of the initial detection symbols is very important in the cancellation algorithm. The proposed scheme improves the accuracy of the initial detection symbol by employing an ICI self-cancellation scheme. The proposed cancellation scheme with only one iteration achieves better performance compared to the conventional cancellation schemes with many times iterations based on the conventional Alamouti coded OFDM.