• Title/Summary/Keyword: IBPFC

Search Result 3, Processing Time 0.016 seconds

Input Current Ripple Improvement on Interleaved Boost Power Factor Corrector Operating in Discontinuous Current Mode (불연속 전류모드로 동작하는 Interleaved 승압형 역률보상 컨버터의 입력전류 리플개선)

  • 허태원;박지호;노태균;김동완;박한석;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a pre-regulator in switched mode power supply. The pre-regulator plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

Analysis of Interleaved Boost Power Factor Corrector (Interleaved 승압형 역률보상 컨버터의 해석)

  • Heo, Tae-Won;Park, Jee-Ho;Roh, Tae-Kyun;Chung, Jae-Lyoun;Kim, Dong-Wan;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.186-192
    • /
    • 2002
  • In this paper, interleaved boost power factor corrector(IBPFC) is applied as a pre-regulator in switch mode power supply. IBPFC can reduce input current ripple and effectively increase the switching frequency without increasing the switching losses, because input current is divided each 50% by two switching devices. IBPFC can be classified as three cases by duty ratio condition in continuous current mode and be carried out state space average modeling. According to the modeling, steady and transient state analysis is performed by steady elements and perturbation element. Control transfer function is derived for design of control system.

Analysis and Design of Interleaved Boost Power Factor Corrector on Two Stage AC/DC PFC Converter (2단 역률보상회로를 구성하는 Interleaved 승압형 컨버터의 해석 및 설계)

  • 허태원;손영대;김동완;김춘삼;박한석;우정인
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.343-351
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a first-stage converter in switch mode power supply. The first-stage converter plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Not only steady-state characteristics but also dynamic characteristics is considered. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.