• Title/Summary/Keyword: IBAD

Search Result 127, Processing Time 0.039 seconds

Effects of the Brazing Bonding between Al2O3 and STS304 with an Ion Beams (이온빔을 이용한 STS304와 알루미나 브레이징 접합효과)

  • Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8679-8683
    • /
    • 2015
  • Using a surface modification technique, ion beam assisted deposition (IBAD) of Ti thin film it becomes possible to prepare an active ceramic surface to braze $Al_2O_3$-STS304 with conventional Ag-Cu eutectic composition filler metal. Researches on bonding formations at interfaces of ceramic joints were mainly related on the development of filler metals to ceramic, the process parameters, and clarifications of reaction products. From the results, the reactive brazing is a very convenient technique compared to the conventional Mn-Mo method. However melting point of reactive filler is still higher than that of Ag-Cu eutectic and it forms the brittle inter metallic compound. Recently several new approaches are introduced to overcome the main shortcomings of the reactive metal brazing in ceramic-metal, metal vapor vacuum arc ion source was introduced to implant the reactive element directly into the ceramics surface, and sputter deposition with sputter etching for the deposition of active material.

In-situ electron beam growth of $YBa_2Cu_3O_{7-x}$ coated conductors on metal substrates

  • Jo, W.;Ohnishi, T.;Huh, J.;Hammond, R.H.;Beasley, M.R.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • High temperature superconductor $YBa_2Cu_3O_{7-x}$ (YBCO) films have been grown by in-situ electron beam evaporation on artificial metal tapes such as ion-beam assisted deposition (IBAD) and rolling assisted biaxially textured substrates (RABiTS). Deposition rate of the YBCO films is $10{\sim}100{\AA}/sec$. X-ray diffraction shows that the films are grown epitaxially but have inter-diffusion phases, like as $BaZrO_3\;or\;BaCeO_3$, at their interfaces between YBCO and yttrium-stabilized zirconia (YSZ) or $CeO_2$, respectively. Secondary ion mass spectroscopy depth profile of the films confirms diffused region between YBCO and the buffer layers, indicating that the growth temperature ($850{\sim}900^{\circ}C$) is high enough to cause diffusion of Zr and Ba. The films on both the substrates show four-fold symmetry of in-plane alignment but their width in the -scan is around $12{\sim}15^{\circ}$. Transmission electron microscopy shows an interesting interface layer of epitaxial CuO between YBCO and YSZ, of which growth origin may be related to liquid flukes of Ba-Cu-O. Resistivity vs temperature curves of the films on both substrates were measured. Resistivity at room temperature is between 300 and 500 cm, the extrapolated value of resistivity at 0 K is nearly zero, and superconducting transition temperature is $85{\sim}90K$. However, critical current density of the films is very low, ${\sim}10^3A/cm^2$. Cracking of the grains and high-growth-temperature induced reaction between YBCO and buffer layers are possible reasons for this low critical current density.

  • PDF

Structural and Discharge Characteristics of MgO Deposited by Oxygen-Ion-Beam-Assisted Deposition in AC PDP (산소 이온 빔 보조 증착된 AC PDP용 MgO 보호막의 특성 연구)

  • Li, Zhao-Hui;Kim, Kwang-Ho;Ahn, Min-Hung;Hong, Seng-Jae;Im, Seung-Kyeok;Kwon, Sang-Jik
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.338-342
    • /
    • 2007
  • The magnesium oxide (MgO) protective layer plays an important role in plasma display panels (PDPs). In this paper, we describe the structural and discharge properties of MgO thin films, which were prepared by the ion-beam-assisted deposition (IBAD) of oxygen as the protective layer of PDPs. The energy of the oxygen ion beam was used as the parameter to control the deposition. We found that the oxygen ion beam energy was effective in determining in structural and discharge characteristics. The lowest firing inception voltage, the highest brightness and the highest luminous efficiency were obtained when the MgO thin film was deposited with an oxygen ion beam energy of 300 eV. The crystallization of the MgO thin film was also measured by X-ray diffraction analysis, and the surface quality was measured by atomic force microscopy.

Effect of Surface Roughness on the Actuation of Ionic Polymer Metal Composites (표면 조도에 따른 이온성 고분자-금속 복합체의 구동특성)

  • Jung, Sunghee;Song, Jeomsik;Kim, Guoosuk;Lee, Sukmin;Mun, Museong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.586-590
    • /
    • 2006
  • As one of electro active polymers for soft smart materials, the ionic polymer metal composites (IPMC) are easy to produce through chemical reduction processing and show high displacements at low voltage. When the IPMC actuates, the deformation depends on a few factors including the structure of based membrane, species and morphology of the metal electrodes, the nature of cations and the level of hydration. As previously published, we have been studying on improvement of actuation through surface electrode modification of IPMC to grasp the effect of electrode morphology on actuation. This study is comparative experiments through the chemical reaction and deposition by ion beam assisted deposition (IBAD) in order to prepare the very thin and homogeneous surface electrode of IPMC. The IPMCs were prepared with different surface roughness of polymer membrane, and the influence of the surface roughness on the actuation was studied. By investigating the electrical properties and driving displacement, the actuating properties of IPMC with different surface roughness were studied.

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.

Ag Ion Substituted HAp Coatings on Ti-6Al-4V Substrate by IBAD and It's Bactericidal Effect (Ti 합금표면의 항균성 HAp Coating에 관한 연구)

  • Jung, Moon-Young;Kim, Taik-Nam;Kim, Yun-Jong;Yim, Hyuk-Jun;Kim, Jong-Ock;Lim, Dae-young;Kim, Sun-Ok
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.189-197
    • /
    • 1998
  • Hyeroxyapatite(HAp) which has good biocompatibility was made by Wet Chemical Process. The surface of Ti-6Al-4V, coated with HAp by lon Beam Assisted Deposition (IBAD), was treated with 5ppm, 10ppm, 20ppm, and 100ppm of $AgNO_3$ solution. In this Ag impregnation process, $Ca^{2+}$ of HAp was substituted with $Ag^+$ of $AgNO_3$. In this study, the antimicrobial effect and biocompatibility of Ti-6Al-4V alloy which was coated with Ag-HAp were examined. The antimicrobial test was carried out with two kinds of bacteria(P. Aeruginosa, S. Epidermidis), which are highly infectious in a transplanting operation of implant materials. As a result of the test, it was observed that Ti-6Al-4V alloy which was treated by 20ppm of $AgNO_3$ solution has good biocompatibility. In order to observe the antimicrobial mechanism of $Ag^+$, E. coli which is the most common bacterium was treated by Ag-HAp. Then cell morphology of E. coli was observed by the transmission electron microscope(TEM). The destruction of cell wall and cytoplasm of E. coil were observed. A black spot appeared in the cytoplasm was analyzed by energy dispersive analysis X-ray (EDAX) and it showed a small amount of $Ag^+$. Thus, it was proved that $Ag^+$ destroys bacteria effectively and Ti-6Al-4V alloy which was impregnate with Ag ion show antimicrobial effect on infection bacteria.

  • PDF