• Title/Summary/Keyword: I-ring

Search Result 971, Processing Time 0.033 seconds

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.

ON 𝜙-SHARP RINGS

  • Darani, Ahmad Yousefian;Rahmatinia, Mahdi
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.237-246
    • /
    • 2016
  • The purpose of this paper is to introduce some new class of rings that are closely related to the classes of sharp domains, pseudo-Dededkind domains, TV domains and finite character domains. A ring R is called a ${\phi}$-sharp ring if whenever for nonnil ideals I, A, B of R with $I{\supseteq}AB$, then I = A'B' for nonnil ideals A', B' of R where $A^{\prime}{\supseteq}A$ and $B^{\prime}{\supseteq}B$. We proof that a ${\phi}$-Dedekind ring is a ${\phi}$-sharp ring and we get some properties that by them a ${\phi}$-sharp ring is a ${\phi}$-Dedekind ring.

AN ASSOCIATED SEQUENCE OF IDEALS OF AN INCREASING SEQUENCE OF RINGS

  • Ali, Benhissi;Abdelamir, Dabbabi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1349-1357
    • /
    • 2022
  • Let 𝒜 = (An)n≥0 be an increasing sequence of rings. We say that 𝓘 = (In)n≥0 is an associated sequence of ideals of 𝒜 if I0 = A0 and for each n ≥ 1, In is an ideal of An contained in In+1. We define the polynomial ring and the power series ring as follows: $I[X]\, = \,\{\, f \,=\, {\sum}_{i=0}^{n}a_iX^i\,{\in}\,A[X]\,:\,n\,{\in}\,\mathbb{N},\,a_i\,{\in}\,I_i \,\}$ and $I[[X]]\, = \,\{\, f \,=\, {\sum}_{i=0}^{+{\infty}}a_iX^i\,{\in}\,A[[X]]\,:\,a_i\,{\in}\,I_i \,\}$. In this paper we study the Noetherian and the SFT properties of these rings and their consequences.

NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.479-484
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and d = dim A. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,...,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1-d, where a(G(I)) denotes the a-invariant of G(I). Let S = A[Q/a$_1$] and P = mS. In this paper, we show that the following conditions are equivalent. (1) $I^2$ = QI and I = Q:I. (2) $I^2S$ = $a_1$IS and IS = $a_1$S:sIS. (3) $I^2$Sp = $a_1$ISp and ISp = $a_1$Sp :sp ISp. We denote by $X_A(Q)$ the set of good ideals I in $X_A(Q)$ such that I contains Q as a reduction. As a Corollary of this result, we show that $I\inX_A(Q)\Leftrightarrow\IS_P\inX_{SP}(Qp)$.

REVERSIBLE AND PSEUDO-REVERSIBLE RINGS

  • Huang, Juan;Jin, Hai-lan;Lee, Yang;Piao, Zhelin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1257-1272
    • /
    • 2019
  • This article concerns the structure of idempotents in reversible and pseudo-reversible rings in relation with various sorts of ring extensions. It is known that a ring R is reversible if and only if $ab{\in}I(R)$ for $a,b{\in}R$ implies ab = ba; and a ring R shall be said to be pseudoreversible if $0{\neq}ab{\in}I(R)$ for $a,b{\in}R$ implies ab = ba, where I(R) is the set of all idempotents in R. Pseudo-reversible is seated between reversible and quasi-reversible. It is proved that the reversibility, pseudoreversibility, and quasi-reversibility are equivalent in Dorroh extensions and direct products. Dorroh extensions are also used to construct several sorts of rings which are necessary in the process.

Quasi-reversibility of the Ring of 2 × 2 Matrices over an Arbitrary Field

  • Heidari, Dariush;Davvaz, Bijan
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.71-72
    • /
    • 2020
  • A ring R is quasi-reversible if 0 ≠ ab ∈ I(R) for a, b ∈ R implies ba ∈ I(R), where I(R) is the set of all idempotents in R. In this short paper, we prove that the ring of 2×2 matrices over an arbitrary field is quasi-reversible, which is an answer to the question given by Da Woon Jung et al. in [Bull. Korean Math. Soc., 56(4) (2019) 993-1006].

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

RINGS WITH REFLEXIVE IDEALS

  • Han, Juncheol;Park, Sangwon
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.305-316
    • /
    • 2018
  • Let R be a ring with identity. A right ideal ideal I of a ring R is called ref lexive (resp. completely ref lexive) if $aRb{\subseteq}I$ implies that $bRa{\subseteq}I$ (resp. if $ab{\subseteq}I$ implies that $ba{\subseteq}I$) for any $a,\;b{\in}R$. R is called ref lexive (resp. completely ref lexive) if the zero ideal of R is a reflexive ideal (resp. a completely reflexive ideal). Let K(R) (called the ref lexive radical of R) be the intersection of all reflexive ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an reflexive ideal of a ring are obtained; (2) reflexive (resp. completely reflexive) property is Morita invariant; (3) For any ring R, we have $K(M_n(R))=M_n(K(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a ring R, we have $K(R)[x]{\subseteq}K(R[x])$; in particular, if R is quasi-Armendaritz, then R is reflexive if and only if R[x] is reflexive.

A GORENSTEIN HOMOLOGICAL CHARACTERIZATION OF KRULL DOMAINS

  • Shiqi Xing;Xiaolei Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.735-744
    • /
    • 2024
  • In this note, we shed new light on Krull domains from the point view of Gorenstein homological algebra. By using the so-called w-operation, we show that an integral domain R is Krull if and only if for any nonzero proper w-ideal I, the Gorenstein global dimension of the w-factor ring (R/I)w is zero. Further, we obtain that an integral domain R is Dedekind if and only if for any nonzero proper ideal I, the Gorenstein global dimension of the factor ring R/I is zero.

A NOTE ON MINIMAL PRIME IDEALS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1291
    • /
    • 2017
  • Let R be a strongly 2-primal ring and I a proper ideal of R. Then there are only finitely many prime ideals minimal over I if and only if for every prime ideal P minimal over I, the ideal $P/{\sqrt{I}}$ of $R/{\sqrt{I}}$ is finitely generated if and only if the ring $R/{\sqrt{I}}$ satisfies the ACC on right annihilators. This result extends "D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14." to large classes of noncommutative rings. It is also shown that, a 2-primal ring R only has finitely many minimal prime ideals if each minimal prime ideal of R is finitely generated. Examples are provided to illustrate our results.