• Title/Summary/Keyword: I-V Conversion circuit

Search Result 52, Processing Time 0.038 seconds

Design and Implementation of an optical wavelength analyzer (광파장분석기 설계 및 구현)

  • Park, Sung-Hoon;Park, Jong-Won;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.571-574
    • /
    • 2012
  • optical wavelength analyzer design and implementation of this study is about. For experiments, the input light in the infrared, ultraviolet, visible as a light source was used. I-V Converting circuit configured as a photodiode. I-V Converting circuit voltage is measured. Measured voltage can be determined for a wavelength in size.

  • PDF

Operating Temperature Characteristics of Amorphous Silicon Solar Cells (비정질(非晶質) 실리콘 태양전지(太陽電池)의 동작온도(動作溫度) 특성(特性))

  • Han, Min-Koo
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.30-34
    • /
    • 1987
  • Experimental results are discussed concerning temperature effects from $25^{\circ}C$ to $100^{\circ}C$ on amorphous silicon solar cells. N-I-P hydrogenated amorphous silicon solar cells are fabricated on stainless steel and indium tin oxide glass substrates. The open circuit voltage, short circuit current, fill factor and conversion efficiency have been measured under AM1 condition as a function of temperature. The open circuit voltage decreased by $2.6mV/^{\circ}C$ while the short circuit current increases with increased temperature. The conversion efficiency is almost independent of temperature which is contrary to widely using single crystalline solar cells of which efficiencies decrease with increasing temperature.

  • PDF

Wavelength Conversion Lanthanide(III)-cored Complex for Highly Efficient Dye-sensitized Solar Cells

  • Oh, Jung-Hwan;Song, Hae-Min;Eom, Yu-Kyung;Ryu, Jung-Ho;Ju, Myung-Jong;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2743-2750
    • /
    • 2011
  • Lanthanide(III)-cored complex as a wavelength conversion material has been successfully designed and synthesized for highly efficient dye-sensitized solar cells, for the first time, since light with a short wavelength has not been effectively used for generating electric power owing to the limited absorption of these DSSCs in the UV region. A black dye (BD) was chosen and used as a sensitizer, because BD has a relatively weak light absorption at shorter wavelengths. The overall conversion efficiency of the BD/WCM device was remarkably increased, even with the relatively small amount of WCM added to the device. The enhancement in $V_{oc}$ by WCM, like DCA, could be correlated with the suppression of electron recombination between the injected electrons and $I_3{^-}$ ions. Furthermore, the short-circuit current density was significantly increased by WCM with a strong UV light-harvesting effect. The energy transfer from the Eu(III)-cored complex to the $TiO_2$ film occurred via the dye, so the number of electrons injected into the $TiO_2$ surface increased, i.e., the short-circuit current density was increased. As a result, BD/WCM-sensitized solar cells exhibit superior device performance with the enhanced conversion efficiency by a factor of 1.22 under AM 1.5 sunlight: The photovoltaic performance of the BD/WCM-based DSSC exhibited remarkably high values, $J_{sc}$ of 17.72 mA/$cm^2$, $V_{oc}$ of 720 mV, and a conversion efficiency of 9.28% at 100 mW $cm^{-2}$, compared to a standard DSSC with $J_{sc}$ of 15.53 mA/$cm^2$, $V_{oc}$ of 689 mV, and a conversion efficiency of 7.58% at 100 mW $cm^{-2}$. Therefore, the Eu(III)-cored complex is a promising candidate as a new wavelength conversion coadsorbent for highly efficient dye-sensitized solar cells to improve UV light harvesting through energy transfer processes. The abstract should be a single paragraph which summaries the content of the article.

Evaluation of a betavoltaic energy converter supporting scalable modular structure

  • Kang, Taewook;Kim, Jinjoo;Park, Seongmo;Son, Kwangjae;Park, Kyunghwan;Lee, Jaejin;Kang, Sungweon;Choi, Byoung-Gun
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.254-261
    • /
    • 2019
  • Distinct from conventional energy-harvesting (EH) technologies, such as the use of photovoltaic, piezoelectric, and thermoelectric effects, betavoltaic energy conversion can consistently generate uniform electric power, independent of environmental variations, and provide a constant output of high DC voltage, even under conditions of ultra-low-power EH. It can also dramatically reduce the energy loss incurred in the processes of voltage boosting and regulation. This study realized betavoltaic cells comprised of p-i-n junctions based on silicon carbide, fabricated through a customized semiconductor recipe, and a Ni foil plated with a Ni-63 radioisotope. The betavoltaic energy converter (BEC) includes an array of 16 parallel-connected betavoltaic cells. Experimental results demonstrate that the series and parallel connections of two BECs result in an open-circuit voltage $V_{oc}$ of 3.06 V with a short-circuit current $I_{sc}$ of 48.5 nA, and a $V_{oc}$ of 1.50 V with an $I_{sc}$ of 92.6 nA, respectively. The capacitor charging efficiency in terms of the current generated from the two series-connected BECs was measured to be approximately 90.7%.

The Characteristics of a Hydrogenated Amorphous Silicon Semitransparent Solar Cell When Applying n/i Buffer Layers

  • Lee, Da Jung;Yun, Sun Jin;Lee, Seong Hyun;Lim, Jung Wook
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.730-733
    • /
    • 2013
  • In this work, buffer layers with various conditions are inserted at an n/i interface in hydrogenated amorphous silicon semitransparent solar cells. It is observed that the performance of a solar cell strongly depends on the arrangement and thickness of the buffer layer. When arranging buffer layers with various bandgaps in ascending order from the intrinsic layer to the n layer, a relatively high open circuit voltage and short circuit current are observed. In addition, the fill factors are improved, owing to an enhanced shunt resistance under every instance of the introduced n/i buffer layers. Among the various conditions during the arrangement of the buffer layers, a reverse V shape of the energy bandgap is found to be the most effective for high efficiency, which also exhibits intermediate transmittance among all samples. This is an inspiring result, enabling an independent control of the conversion efficiency and transmittance.

Novel Fabrication of Platinum Counter Electrode in Dye-sensitized Solar Cells Using Nano-second Pulsed Laser Sintering

  • Lee, Jin Ah;Yoo, Kicheon;Kim, Woong;Ko, Min Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.234-234
    • /
    • 2013
  • The counter electrodes in dye-sensitized solar cells (DSSCs) play roles in not only collecting electrons from external circuit but also reducing I3- to I- in electrolytes. Generally, conventional counter electrodes for DSSCs are prepared from the high temperature treatment of the H2PtCl6 precursor solution at $400^{\circ}C$ However, the more simplified fabrication process of counter electrodes is required for the commercialization of DSSCs. In this work, we developed novel fabrication process of counter electrodes using nano-second pulsed laser. DSSCs employing counter electrodes prepared by laser process showed conversion efficiency of 6.75% with short-circuit current of 12.73 mA/cm2, open-circuit voltage of 0.74 V and fill factor of 0.72. Closer investigating of photovoltaic properties will be reported.

  • PDF

Performance Characteristics of p-i-n type Organic Thin-film Photovoltaic Cell with Rubrene:CuPc Hole Transport Layer (Rubrene:CuPc 정공 수송층이 도입된 p-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Kang, Hak-su;Hwang, Jongwon;Kang, Yongsu;Lee, Hyehyun;Choe, Youngson
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.654-659
    • /
    • 2010
  • We have investigated the effect of rubrene-doped CuPc hole transport layer on the performance of p-i-n type bulk hetero-junction photovoltaic device with a structure of ITO/PEDOT:PSS/CuPc: rubrene/CuPc:C60(blending ratio 1:1)/C60/BCP/Al and have evaluated the current density-voltage(J-V) characteristics, short-circuit current($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and energy conversion efficiency(${\eta}_e$) of the device. By rubrene doping into CuPc hole transport layer, absorption intensity in absorption spectra decreased. However, the performance of p-i-n organic type bulk hetero-junction photovoltaic device fabricated with crystalline rubrene-doped CuPc was improved since rubrene shows higher bandgap and hole mobility compared to CuPc. Increased injection currents have effected on the performance improvement of the present device with energy conversion efficiency(${\eta}_e$) of 1.41%, which is still lower value compared to silicone solar cell and many efforts should be made to improve organic photovoltaic devices.

Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer (CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Park, So-Hyun;Kang, Hak-Su;Senthilkumar, Natarajan;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • We have investigated the effect of strong p-type organic semiconductor $F_4$-TCNQ-doped CuPc hole transport layer on the performance of p-i-n type bulk heterojunction photovoltaic device with ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5 wt%)/CuPc:C60(blending ratio l:l)/C60/BCP/LiF/Al, architecture fabricated via vacuum deposition process, and have evaluated the J-V characteristics, short-circuit current ($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and power conversion efficiency(${\eta}_e$) of the device. By doping $F_4$-TCNQ into CuPc hole transport layer, increased absorption intensity in absorption spectra, uniform dispersion of organic molecules in the layer, surface uniformity of the layer, and enhanced injection currents improved the current photovoltaic device with power conversion efficiency(${\eta}_e$) of 0.16%, which is still low value compared to silicone solar cell indicating that many efforts should be made to improve organic photovoltaic devices.

A 2.4-GHz Low-Power Direct-Conversion Transmitter Based on Current-Mode Operation (전류 모드 동작에 기반한 2.4GHz 저전력 직접 변환 송신기)

  • Choi, Joon-Woo;Lee, Hyung-Su;Choi, Chi-Hoon;Park, Sung-Kyung;Nam, Il-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, a low-power direct-conversion transmitter based on current-mode operation, which satisfies the IEEE 802.15.4 standard, is proposed and implemented in a $0.13{\mu}m$ CMOS technology. The proposed transmitter consists of DACs, LPFs, variable gain I/Q up-conversion mixer, a divide-by-two circuit with LO buffer, and a drive amplifier. By combining DAC, LPF, and variable gain I/Q up-conversion mixer with a simple current mirror configuration, the transmitter's power consumption is reduced and its linearity is improved. The drive amplifier is a cascode amplifier with gain controls and the 2.4GHz I/Q differential LO signals are generated by a divide-by-two current-mode-logic (CML) circuit with an external 4.8GHz input signal. The implemented transmitter has 30dB of gain control range, 0dBm of maximum transmit output power, 33dBc of local oscillator leakage, and 40dBc of the transmit third harmonic component. The transmitter dissipates 10.2mW from a 1.2V supply and the die area of the transmitter is $1.76mm{\times}1.26mm$.

A High-Efficiency High Step-Up Interleaved Converter with a Voltage Multiplier for Electric Vehicle Power Management Applications

  • Tseng, Kuo-Ching;Chen, Chun-Tse;Cheng, Chun-An
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.414-424
    • /
    • 2016
  • This paper proposes a novel high-efficiency high-step-up interleaved converter with a voltage multiplier, which is suitable for electric vehicle power management applications. The proposed interleaved converter is capable of achieving high step-up conversion by employing a voltage-multiplier circuit. The proposed converter lowers the input-current ripple, which can extend the input source's lifetime, and reduces the voltage stress on the main switches. Hence, large voltage spikes across the main switches are alleviated and the efficiency is improved. Finally, a prototype circuit with an input voltage of 24 V, an output voltage of 380 V, and an output rated power of 1 kW is implemented and tested to demonstrate the functionality of the proposed converter. Moreover, satisfying experimental results are obtained and discussed in this paper. The measured full-load efficiency is 95.2%, and the highest measured efficiency of the proposed converter is 96.3%.