• 제목/요약/키워드: I/N

검색결과 11,084건 처리시간 0.04초

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • 대한수학회지
    • /
    • 제39권1호
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

비정질 실리콘을 이용한 방사선 계측시 Photoconductive Gain의 특성

  • 이형구;신경섭
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권3호
    • /
    • pp.307-313
    • /
    • 1997
  • 비정질 실리콘에서의 photoconductive gain mechanism을 방사선 계측시 이용하기 위한 연구를 수행하였다. p-i-n, n-i-n, n-i-p-i-n과 같은 여러 형태의 비정질 실리콘 계측기를 제작하고 시험하였다. Photoconductive gain은 두 가지의 시간적 범위에서 측정하였다. : 하나는 고에너지의 하전입자나 감마선의 통과를 모사하기 위해서 $1{\mu }$ sec 보다 짧은 가시광선 펄스를 사용하였고, 다른 하나는 의학영상에 사용되는 x-선을 모사하기 위하여 보다 긴 1msec 정도의 가시광선 펄스를 사용하였다. 두 가지의 photoconductive gain-current gain과 charge gain-을 정의하여 실험하였으며, charge gain은 current gain을 시간에 따라 적분한 값이다. 10 mA/$cm^2$의 dark current density level에서, 짧은 펄스에 대해서는 3~9정도의 charge gain을 얻을 수 있었고 긴 펄스에 대해서는 수백의 charge gain을 얻을 수 있었다. 여러 가지의 gain에 대한 결과를 계측기의 구조, 부가전압, dark current density와의 관계를 통하여 논의하였다.

  • PDF

SELF-ADJOINT INTERPOLATION ON AX = Y IN $\mathcal{B}(\mathcal{H})$

  • Kwak, Sung-Kon;Kim, Ki-Sook
    • 호남수학학술지
    • /
    • 제30권4호
    • /
    • pp.685-691
    • /
    • 2008
  • Given operators $X_i$ and $Y_i$ (i = 1, 2, ${\cdots}$, n) acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A acting on $\mathcal{H}$ such that $AX_i$ = $Y_i$ for i= 1, 2, ${\cdots}$, n. In this article, if the range of $X_k$ is dense in H for a certain k in {1, 2, ${\cdots}$, n), then the following are equivalent: (1) There exists a self-adjoint operator A in $\mathcal{B}(\mathcal{H})$ stich that $AX_i$ = $Y_i$ for I = 1, 2, ${\cdots}$, n. (2) $sup\{{\frac{{\parallel}{\sum}^n_{i=1}Y_if_i{\parallel}}{{\parallel}{\sum}^n_{i=1}X_if_i{\parallel}}:f_i{\in}H}\}$ < ${\infty}$ and < $X_kf,Y_kg$ >=< $Y_kf,X_kg$> for all f, g in $\mathcal{H}$.

ON THE ADAPTED EQUATIONS FOR SEVERAL DYPLOID MODEL IN POPULATION GENETICS

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • 제30권1호
    • /
    • pp.67-72
    • /
    • 2022
  • For a locus with two alleles (IA and IB), the frequencies of the alleles are represented by $$p=f(I^A)={\frac{2N_{AA}+N_{AB}}{2N},\;q=f(I^B)={\frac{2N_{BB}+N_{AB}}{2N}$$ where NAA, NAB and NBB are the numbers of IAIA, IAIB and IBIB respectively and N is the total number of populations. The frequencies of the genotypes expected are calculated by using p2, 2pq and q2. Choi showed the method of whether some genotypes is in these probabalities. Also he calculate the probability generating function for offspring number of genotype under a diploid model( [1]). In this paper, let x(t, p) be the probability that IA become fixed in the population by time t-th generation, given that its initial frequency at time t = 0 is p. We find adapted equations for x using the mean change of frequence of alleles and fitness of genotype. Also we apply this adapted equations to several diploid model and it also will apply to actual examples.

PRECISE RATES IN THE LAW OF THE LOGARITHM FOR THE MOMENT CONVERGENCE OF I.I.D. RANDOM VARIABLES

  • Pang, Tian-Xiao;Lin, Zheng-Yan;Jiang, Ye;Hwang, Kyo-Shin
    • 대한수학회지
    • /
    • 제45권4호
    • /
    • pp.993-1005
    • /
    • 2008
  • Let {$X,\;X_n;n{\geq}1$} be a sequence of i.i.d. random variables. Set $S_n=X_1+X_2+{\cdots}+X_n,\;M_n=\max_{k{\leq}n}|S_k|,\;n{\geq}1$. Then we obtain that for any -1$\lim\limits_{{\varepsilon}{\searrow}0}\;{\varepsilon}^{2b+2}\sum\limits_{n=1}^\infty\;{\frac {(log\;n)^b}{n^{3/2}}\;E\{M_n-{\varepsilon}{\sigma}\sqrt{n\;log\;n\}+=\frac{2\sigma}{(b+1)(2b+3)}\;E|N|^{2b+3}\sum\limits_{k=0}^\infty\;{\frac{(-1)^k}{(2k+1)^{2b+3}$ if and only if EX=0 and $EX^2={\sigma}^2<{\infty}$.

Strong Higher Derivations on Ultraprime Banach Algebras

  • Lee, Young-Whan;Park, Kyoo-Hong
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.117-122
    • /
    • 1994
  • In this paper we show that if {$H_n$} is a continuous strong higher derivation of order n on an ultraprime Banach algebra with a constant c, then $c||H_1||^2{\leq}4||H_2||$ and for each $1{\leq}l$ < n $$c^2||H_1||\;||H_{n-l}{\leq}6||H_n||+\frac{3}{2}\sum_{\array{i+j+k=n\\i,j,k{\geq}1}}||H_i||\;||H_j||\;||H_k||+\frac{3}{2}\sum_{\array{i+k=n\\i{\neq}l,\;n-1}}||H_i||\;||H_k|| $$ and for a strong higher derivation {$H_n$} of order n on a prime ring A we also show that if [$H_n$(x),x]=0 for all $x{\in}A$ and for every $n{\geq}1$, then A is commutative or $H_n=0$ for every $n{\geq}1$.

  • PDF

ON CONSTANT-SIGN SOLUTIONS OF A SYSTEM OF DISCRETE EQUATIONS

  • Agarwal, Ravi-P.;O'Regan, Donal;Wong, Patricia-J.Y.
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.1-37
    • /
    • 2004
  • We consider the following system of discrete equations $u_i(\kappa)\;=\;{\Sigma{N}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;{\cdots}\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;,\;T\},\;1\;{\leq}\;i\;{\leq}\;n\;where\;T\;{\geq}\;N\;>\;0,\;1\;{\leq}i\;{\leq}\;n$. Existence criteria for single, double and multiple constant-sign solutions of the system are established. To illustrate the generality of the results obtained, we include applications to several well known boundary value problems. The above system is also extended to that on $\{0,\;1,\;{\cdots}\;\}\;u_i(\kappa)\;=\;{\Sigma{\infty}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;\cdots\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;\},\;1\;{\leq}\;i\;{\leq}\;n$ for which the existence of constant-sign solutions is investigated.

SOLUTION OF A VECTOR VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION

  • Park, Won-Gil;Bae, Jae-Hyeong
    • 대한수학회논문집
    • /
    • 제23권2호
    • /
    • pp.191-199
    • /
    • 2008
  • We investigate the relation between the vector variable bi-additive functional equation $f(\sum\limits^n_{i=1} xi,\;\sum\limits^n_{i=1} yj)={\sum\limits^n_{i=1}\sum\limits^n_ {j=1}f(x_i,y_j)$ and the multi-variable quadratic functional equation $$g(\sum\limits^n_{i=1}xi)\;+\;\sum\limits_{1{\leq}i<j{\leq}n}\;g(x_i-x_j)=n\sum\limits^n_{i=1}\;g(x_i)$$. Furthermore, we find out the general solution of the above two functional equations.

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.

자연수 m의 일반화된 배수 판정법 (Generalized Divisibility Rule of Natural Number m)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.87-93
    • /
    • 2014
  • n/m=qm+r에서 에서 m=7인 단순한 경우에도 주어진 수 n이 m의 배수 판정법은 간단하지가 않다. 만약, m이 두 자리 수 이상이 되면 더욱 복잡해진다. 일반적인 배수 판정법으로 둔켈스 (Dunkels)법이 있지만 n이 컴퓨터로 처리하지 못하는 매우 큰 자리수인 경우 이 방법도 처리할 수 없다. 본 논문은 n과 m의 자리수와 무관하게 n(modm)=0 여부로 n이 m의 배수인지 여부를 검증하는 간단하면서도 정확한 방법을 제안한다. 제안된 방법은 $n=n_1n_2n_3{\cdots}n_k$, $m=m_1m_2{\cdots}m_l$에 대해 $r_1=n_1n_2{\cdots}n_l(mod m)$으로 설정하고, $r_i=r_{i-1}{\times}10+n_i(mod m)$, $i=2,3,{\cdots},k-1+1$로 n의 자리수를 1자리씩 감소시키는 방법을 적용하였다. 제안된 방법을 다양한 n,m 데이터에 적용한 결과 쉽고, 빠르며 정확한 몫과 나머지 값을 구할 수 있음을 보였다.