• Title/Summary/Keyword: Hysteretic characteristic

Search Result 40, Processing Time 0.025 seconds

Seismic response of steel reinforced concrete spatial frame with irregular section columns under earthquake excitation

  • Xue, Jianyang;Zhou, Chaofeng;Liu, Zuqiang;Qi, Liangjie
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • This paper presents some shaking table tests conducted on a 1/4-scaled model with 5-story steel reinforced concrete (SRC) spatial frame with irregular section columns under a series of base excitations with gradually increasing acceleration peaks. The test frame was subjected to a sequence of seismic simulation tests including 10 white noise vibrations and 51 seismic simulations. Each seismic simulation was associated with a different level of seismic disaster. Dynamic characteristic, strain response, acceleration response, displacement response, base shear and hysteretic behavior were analyzed. The test results demonstrate that at the end of the loading process, the failure mechanism of SRC frame with irregular section columns is the beam-hinged failure mechanism, which satisfies the seismic code of "strong column-weak beam". With the increase of acceleration peaks, accumulated damage of the frame increases gradually, which induces that the intrinsic frequency decreases whereas the damping ratio increases, and the peaks of acceleration and displacement occur later. During the loading process, torsion deformation appears and the base shear grows fast firstly and then slowly. The hysteretic curves are symmetric and plump, which shows a good capacity of energy dissipation. In summary, SRC frame with irregular section columns can satisfy the seismic requirements of "no collapse under seldom earthquake", which indicates that this structural system is suitable for the construction in the high seismic intensity zone.

Electromagnetic Design and Performance Evaluation of an MR valve (MR 밸브의 전자기적 설계와 성능 평가)

  • Kim, Ki-Han;Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.968-973
    • /
    • 2007
  • This paper presents an electromagnetic design for the magneto-rheological fluid valve. The MR valve can control high-level fluid power without moving parts, due to the apparent viscosity controllability of the MR fluid in magnetic fields. In order to improve the static characteristic of the MR valve, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Then, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross sectional area through which the flux passes. Two MR valves, one is a conventional type valve and the other is the proposed one, were fabricated and performance evaluation is experimentally achieved through the comparison study using by-pass damper system.

  • PDF

Ignition Safe-Arm-Unit Using Micro-Electromechanical Systems (MEMS를 이용한 추진기관 점화안전장치)

  • Jang, Seung-Gyo;Lee, Sang-Hun;Chang, Hyun-Kee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.282-285
    • /
    • 2009
  • Ignition Safe-Arm-Unit using micro-electromechanical systems(MEMS) for propulsion system was designed and manufactured. MEMS was designed according to the design schemes for conventional mechanical elements. By comparing the design results and the test data of the prototype, small discrepancy was found, which is due to the nonlinear characteristic of the structure and the machining accuracy. The applicability of MEMS for Safe-Arm-Unit was proved by testing MEMS which is assembled into SAU.

  • PDF

Simulation of Leaf Spring for Suspension using FEM (유한요소법을 이용한 현가장치용 겹판스프림의 시뮬레이션)

  • 안오순;이경백;김영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.620-623
    • /
    • 2000
  • The leaf spring is generally used effectively in load supporting because it has tension-diffused function in comparison with other springs. Nowadays the leaf spring is used widely in the suspensions of automobile and trains. The stiffness and the damping characteristics of the leaf spring being essential for the performance of vehicles, the exact evaluation is required. Various approximate formula are normally used for the leaf spring design. however, accuracy and trust are decreased because the contact and frictional characteristics between leaf plates are generally neglected. In this paper, nonlinear stiffness matrix of the leaf spring is solved by contact-element applying FEM for considering the contact and frictional characteristics between leaf plates. The results of proposed FE model are compared with test data.

  • PDF

Structural Behavior of Beam-to-Column Connections with Elasto-Plastic Hysteretic Dampers (탄소성 이력댐퍼를 구비한 접합부의 거동)

  • Oh, Sang-Hoon;Ryu, Hong-Sik;Kim, Young-Ju
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.552-559
    • /
    • 2005
  • The resistance of a structure against an earthquake is related to its ability to absorb the seismic input energy. The development of devices for dissipating the seismically induced energy on the structure is a subject that is receiving large attentionin the field of earthquake engineering. One example of these devices is the steel plate with slits. In this paper, a connection with a slit-type steel plate damper installed at each ends of wide-flange section beam, as an energy absorption element, was proposed. A series of experiment was performed to investigate their behavior and structural characteristic. The main parameters were the aspect ratio of the struts in slit plates, thickness of the struts and height of the vertical plates. Test results indicated that most of the energy was absorbed by plastic deformation of slit plate dampers.

  • PDF

Experimental Modeling of MR Damper for Cruise Bus (우등버스용 MR 댐퍼의 실험적 모델링)

  • Sohn, Jeong-Hyun;Jun, Chul-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.863-867
    • /
    • 2011
  • In this paper, we analyze the characteristic test results of an MR damper for a cruise bus, and we model the nonlinear hysteretic characteristics of the damper using arctangent and polynomial functions. We establish an experimental model of the MR damper according to the input current, and we set the model parameters using the MATLAB Optimization Toolbox. The model is verified via a computer simulation of a full-car model.

Development and Characteristic Tests of Acrylic Rubber for Viscoelastic Dampers (점탄성 댐퍼용 아크릴 방진고무의 개발 및 특성시험)

  • Park, Jin-Il;Jeoung, Jeoung-Kyo;Park, Hae-Dong;Kim, Young-Chan;Kim, Doo-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.722-727
    • /
    • 2001
  • The dynamic characteristics of Viscoelastic(VE) damper are experimentally studied. An experimental test was carried out to study the effects of frequency on the damping and stiffness of VE damper. Various cyclic loading tests are conducted. A good agreement was achieved between the experimental results and analytical model proposed by Kasai et al. Also the damping of acrylic rubber is compared with that of PNR material. It was concluded that the damping value of acrylic rubber is higher than that of PNR material.

  • PDF

Electromagnetic Design Methodology for MR Fluid Actuator (MR 유체 작동기의 전자기적 설계 방법)

  • Nam Yun-Joo;Moon Young-Jin;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1305-1313
    • /
    • 2006
  • This paper presents an electromagnetic design methodology for the magneto-rheological (MR) fluid actuator. In order to improve the performance of the MR fluid actuator, the magnetic circuit including the MR fluid, the ferromagnetic material for flux path and the electromagnetic coil should be well designed, thereby the magnetic field intensity can be effectively supplied to the MR fluid. First of all, in order to improve the static characteristic, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Next, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross section through which the flux passes. The effectiveness of the proposed design methodology is verified by the magnetic analysis and a series of basic experiments.

Experimental study on lead extrusion damper and its earthquake mitigation effects for large-span reticulated shell

  • Yang, M.F.;Xu, Z.D.;Zhang, X.C.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.481-496
    • /
    • 2015
  • A Lead Extrusion Damper (LED) is experimentally studied under various frequencies and displacement amplitudes. Experimental results show that the force-displacement hysteresis loops of the LED are close to rectangular and the force-velocity hysteresis loops exhibit nonlinear hysteretic characteristic. Also, the LED can provide consistent energy dissipation without any stiffness degradation. Based on the experimental results, a mathematical model is then proposed to describe the effects of frequency and displacement on property of LED. It can be proved from the comparison between experimental and numerical results that the mathematical model can accurately describe the mechanical behavior of LED. Subsequently, the seismic responses of the Schwedler reticulated shell structure with LEDs are analyzed by ANSYS software, in which three different installation forms of LEDs are considered. It can be concluded that the LED can effectively reduce the displacement and acceleration responses of this type of structures.

Hysteretic behaviors and calculation model of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Zhang, Guoheng;Xin, A.;Bai, Hengyu
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.305-326
    • /
    • 2022
  • To realize the recycling utilization of waste concrete and alleviate the shortage of resources, 11 specimens of steel reinforced recycled concrete (SRRC) filled circular steel tube columns were designed and manufactured in this study, and the cyclic loading tests on the specimens of columns were also carried out respectively. The hysteretic curves, skeleton curves and performance indicators of columns were obtained and analysed in detail. Besides, the finite element model of columns was established through OpenSees software, which considered the adverse effect of recycled coarse aggregate (RA) replacement rates and the constraint effect of circular steel tube on internal RAC. The numerical calculation curves of columns are in good agreement with the experimental curves, which shows that the numerical model is relatively reasonable. On this basis, a series of nonlinear parameters analysis on the hysteretic behaviors of columns were also investigated. The results are as follows: When the replacement rates of RA increases from 0 to 100%, the peak loads of columns decreases by 7.78% and the ductility decreases slightly. With the increase of axial compression ratio, the bearing capacity of columns increases first and then decreases, but the ductility of columns decreases rapidly. Increasing the wall thickness of circular steel tube is very profitable to improve the bearing capacity and ductility of columns. When the section steel ratio increases from 5.54% to 9.99%, although the bearing capacity of columns is improved, it has no obvious contribution to improve the ductility of columns. With the decrease of shear span ratio, the bearing capacity of columns increases obviously, but the ductility decreases, and the failure mode of columns develops into brittle shear failure. Therefore, in the engineering design of columns, the situation of small shear span ratio (i.e., short columns) should be avoided as far as possible. Based on this, the calculation model on the skeleton curves of columns was established by the theoretical analysis and fitting method, so as to determine the main characteristic points in the model. The effectiveness of skeleton curve model is verified by comparing with the test skeleton curves.