• Title/Summary/Keyword: Hysteresis measurement

Search Result 184, Processing Time 0.026 seconds

State Estimation Technique for VRLA Batteries for Automotive Applications

  • Duong, Van Huan;Tran, Ngoc Tham;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.238-248
    • /
    • 2016
  • The state-of-charge (SOC) and state-of-health (SOH) estimation of batteries play important roles in managing batteries for automotive applications. However, an accurate state estimation of a battery is difficult to achieve because of certain factors, such as measurement noise, highly nonlinear characteristics, strong hysteresis phenomenon, and diffusion effect of batteries. In certain vehicular applications, such as idle stop-start systems (ISSs), significant errors in SOC/SOH estimation may lead to a failure in restarting a combustion engine after the shut-off period of the engine when the vehicle is at rest, such as at a traffic light. In this paper, a dual extended Kalman filter algorithm with a dynamic equivalent circuit model of a lead-acid battery is proposed to deal with this problem. The proposed algorithm adopts a battery model by taking into account the hysteresis phenomenon, diffusion effect, and parameter variations for accurate state estimations of the battery. The validity of the proposed algorithm is verified through experiments by using an absorbed glass mat valve-regulated lead-acid battery and a battery sensor cable for commercial ISS vehicles.

Evaluation of 3D printability of cementitious materials according to thixotropy behavior

  • Lee, Keon-Woo;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • This study is a basic research for evaluating the buildability of cementitious materials for three-dimensional (3D) printing. In the cement paste step, the thixotropy behavior according to the resting time, which represents the time interval between each layer, was analyzed. In addition, the relationship between the thixotropy behavior and 3D concrete printing buildability was derived by proposing a measurement method that simulates the 3D concrete printing buildup process. The analysis of the tendency of the thixotropy behavior according to the resting time revealed that the area of the hysteresis loop (AHyst) showed a tendency to increase and then converge as the resting time increased, which means hysteresis loop approach critical resting time for sufficient buildability. In the thixotropy behavior analysis that simulates the 3D concrete printing buildup process, the buildup ratio, which is the recovery rate of the shear stress, showed a tendency to increase and then converge as the resting time increased, which are similar results like hysteresis loop. It was concluded that AHyst and the buildup ratio can be used as parameters for determining the resting time, and they have close relationships with 3D concrete printing buildability.

Real Time Implementation of Active Power Filters for Harmonic Suppression and Reactive Power Compensation using dSPACE DS1104

  • Kumar, Seethapathy;Umamaheswari, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.373-378
    • /
    • 2008
  • In this paper, an Active Power Filter (APF) is implemented using a dSPACE DS1104 processor to compensate harmonics and reactive power produced by nonlinear load. The reference source current is computed based on the measurement of harmonics in the supply voltage and load current. A hysteresis based current controller has been implemented in a DSP processor for injecting the compensating current into the power system, so that APF allows suppression of the harmonics and reactive power component of load current, resulting in a supply current that is purely sinusoidal. Simulation and experimental results of the proposed APF to meet the IEEE-519 standards are presented.

Evaluation of Microstructures and Mechanical Property of Variously Heat Treated 0.85% Carbon Steel by Magnetic Method (자기적 방법에 의한 0.85% 탄소강의 열처리에 따른 미세조직 및 기계적 성질 평가)

  • Byeon, Jai-Won;Kwun, S.I.
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.81-87
    • /
    • 2003
  • Microstructures and mechanical properties of variously heat treated 0.85% carbon steel(eutectoid steel) were evaluated by magnetic property measurements. Microstructural analysis (pearlite interstellar spacing), measurement of mechanical properties(Rockwell hardness, yield stress, fracture stress) and magnetic properties(coercivity, remanence, hysteresis loss, saturation magnetization) were performed to clarify mutual relationships among these parameters. Water quenched specimens with martensite structure showed much higher coercivity and remanence than air cooled or furnace cooled specimens with pearlite structure. The linear dependence of coercivity and remanence on pearlite interlamellar spacing as well as on Rockwell hardness, yield stress and fracture stress was observed in the pearlitic steel. Hysteresis loss and saturation magnetization showed no distinct trend with pearlite interlamellar spacing.

Effect of Fabirc Structure on the Mechanical Properties of Shingosen Fabric (직물구조가 신합섬 직물의 역학적 특성에 미치는 영향 (I) 직물밀도 및 감량가공이 전단특성에 미치는 영향)

  • 서문호
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1994.10a
    • /
    • pp.11-11
    • /
    • 1994
  • A new theoretical fabric shear model has been presented and a quantitative study has been conducted on the shear properties of polyethylene(terephthalate)(PET) fabrics of four different fabric densities and five different weight reduction. The fabric shear properties were measured with KES-F handle measurement system. From the theoretical and experimental studies, following results can be summarized : 1) The fabric shear behavior is strongly dependent on the fabric density and free volume available for the constituent yarns and their filament. 2) Shear hysteresis at the small shear angle(2HG) is dependent more on the yarn tensile properties than on the fabric structure. 3) Shear hysteresis at the shear angle, 5(2HG5) is dependent more on the interaction between two crossing yarns which is directly related on the fabric structure than on the yarn tensile properties.

  • PDF

Universal time relaxation behavior of the exchange bias in ferromagnetic/antiferromagnetic bilayers

  • Dho Joonghoe
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2005.12a
    • /
    • pp.80-81
    • /
    • 2005
  • The resilience of the exchange bias ($H_{EX}$) in ferromagnet / antiferromagnet bilayers is generally studied in terms of repeated hysteresis loop cycling or by protracted annealing under reversed field (training and long-term relaxation respectively). The stability of $H_{EX}$ is fundamental for practical application of exchange bias systems. In this paper we report measurements of training and relaxation in FeNi films coupled with the antiferromagnet FeMn. We show that $H_{EX}$ suppressed both by training and relaxation was partially recovered as soon as a field cycling for consecutive hysteresis loop measurement was stopped or the magnetization of the ferromagnet was switched back to the biased direction.

  • PDF

Optical Measurement of Magnetic Anisotropy Field in Nanostructured ferromagnetic Thin Films

  • Whang, Hyun-Seok;Yun, Sang-Jun;Moon, Joon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.8-10
    • /
    • 2015
  • The magnetic anisotropy field plays an important role in spin-orbit-torque-induced magnetization dynamics with electric current injection. Here, we propose a magnetometric technique to measure the magnetic anisotropy field in nanostructured ferromagnetic thin films. This technique utilizes a magneto-optical Kerr effect microscope equipped with two-axis electromagnets. By measuring the out-of-plane hysteresis loops and then analyzing their saturated magnetization with respect to the in-plane magnetic field, the magnetic anisotropy field is uniquely quantified within the context of the Stoner-Wohlfarth theory. The present technique can be applied to small nanostructures, enabling in-situ determination of the magnetic anisotropy field of nanodevices.

Perpendicular Magenetic Anisotropy in TbFeCo Magneto Optic Recording Thin Films

  • Lee, Yong-Ho-;Lee, Sang-Soo-
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1988.06a
    • /
    • pp.127-131
    • /
    • 1988
  • In order to clarify the origin of perpendicular anisotropy in thermally evaporated TbFeCo amorphous thin films, we have investigated the effects of deposition angle on magnetic Kerr hysteresis loop, perpendicular magnetic anisotropy and internal stress depend strongly on the deposition angle and above a threshold value(30$^{\circ}$), the perpendicular anisotropy disapperars and the in-plane anisotropy appears. The measurement of internal stress is the major contribution to the perpendicular anisotropy. The measurements of Kerr hysteresis loops in the polar and the longitudinal directions show that as the deposition angle increases the polar kerr hystresis loop deteriorates while the longitudinal Kerr hystersis loop becomes prominent.

  • PDF

Analysis of Hydraulic behavior in Unsaturated Soil Slope for the Boundary Condition and Hysteresis of SWCC (경계 조건과 불포화 함수 특성 곡선의 이력에 따른 불포화 토사 사면의 수리적 거동 분석)

  • Lee, Eo-Ryeong;Park, Hyun-Su;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Recent weather changes have led to an increase in heavy rainfall resulting in frequent large-scale slope failures. To minimize damage to life and property, a measurement system is used in slope failure warning systems. However, understanding the slope failure behavior is difficult as the measurement system only measures a specific point. Therefore, numerical analysis must be p erformed with the measurement system. The soil water characteristic curve (SWCC) drying curve and boundary conditions that consider evapotranspiration and precipitation have been applied to numerical analysis, but the hysteresis of SWCC affects the numerical analysis results. To address this, a new evapotranspiration calculation method is proposed and applied to boundary conditions, and the measurement data are compared with the results of the numerical analysis. This method takes into account the different infiltration behaviors on evapotranspiration according to the drying and wetting curves of the SWCC, and allows for a more rational prediction of water movement on unsaturated slopes.

Comparison of Different Techniques for Measurement of Cold Work in Mild Steel

  • Badgujar, B.P.;Jha, S.K.;Goswami, G.L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.616-621
    • /
    • 2003
  • There are various Non-Destructive Evaluation (NDE) techniques used for measurement of residual stresses in material, such as magnetic methods, X-ray diffraction, Ultrasonic velocity measurement etc. The capabilities, applications and limitations of these techniques for evaluation of cold work/plastic deformation were studied and compared. Mild steel plates were subjected to different degree of cold deformation and were analyzed by Magneto-mechanical Acoustic Emission (MAE), Barkhausen Noise (BN) and magnetic properties (hysteresis loop parameters analysis). Further, these specimens were analyzed by X-ray diffraction and ultrasonic velocity measurements. The microhardness measurement and microstructure studies of these cold worked plates were also carried out. The results of all these studies and comparison of different techniques are discussed in this paper.