• Title/Summary/Keyword: Hysteresis control

Search Result 485, Processing Time 0.028 seconds

Direct Torque Control Of Induction Motor for Constant Switching Frequency (일정 스위칭 주파수를 위한 유도전동기의 직접토오크 제어)

  • Choi, Youn-Ok;Chung, Byung-Ho;Lim, Byung-Ok;Jeong, Sam-Young;Seo, Jin-Yeon;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1152-1154
    • /
    • 2002
  • In this paper, a direct torque control method of an induction motor is proposed which enables constant switching frequency. The switching strategy of a conventional direct torque control scheme which is based on hysteresis comparator results in a variable switching frequency which depends on the speed, flux, stator voltage and hysteresis band of the comparator. This paper proposes a new switching strategy which determine the effective switching time on each switching period by comparing the ascending and descending torque slopes. The simulation results are presented to verify this proposed scheme.

  • PDF

교류전동기의 벡터제어를 위한 공간벡터에 기저한 전류 제어기

  • 이윤종;임남혁;민강기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.9
    • /
    • pp.753-763
    • /
    • 1990
  • This paper proposes a new current control strategy for current regulated VSI-PWM lnverter. The conventional hysteresis control method has good dynamic response, but the switching frequency in lower region are high because it does not optimise switching patterns. Proposed current control strategy can optimize switching patterns. As regulater, three level comparator are used, the output of comparator select appropriate inverter output voltage vectors via switching table stored in EPROM. The simulation and experimental results in comparison to conventional hysteresis strategy are presented and discussed.

  • PDF

An Improved Friction Model for Precise Tracking Control Systems (정밀 위치제어 시스템을 위한 개선된 마찰 모델)

  • Choe, J.J.;Han, S.I.;Kim, H.M.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.799-804
    • /
    • 2003
  • Friction phenomenon can be described as two parts which are pre-sliding and sliding regions. In motion of the sliding region, friction forces depend on the velocity of the system and are known as Coulomb, stick-slip, stribeck effect and viscous friction. The pre-sliding region, which is before breakaway, depends on the position of the system. The motion of friction in the sliding region can be described as the LuGre model. But the pre-sliding motion of friction, which has hysteresis characteristics in general, is not known widely. Therefore, an improved friction model, which can describe the motion of friction in the pre-sliding region, is proposed in this paper. And simulation and experimental results show the effectiveness of the proposed friction model for precise tracking control systems.

  • PDF

Design on the Controller of Flexible Robot using Sliding Sector Control (슬라이딩 섹터 제어를 이용한 유연한 로봇 팔에 대한 제어기 설계)

  • Han, Jong-Kil;Bae, Sung-Hwan;Yang, Keun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.541-546
    • /
    • 2010
  • When a flexible arm is rotated by a motor about an joint axis, transverse vibration may occur. The motor torque should be controlled in such a way that the moter rotates by a specified angle, while simultaneously stabilizing vibration of the flexible arm so that it is arrested at the end of rotation. In this paper, the dynamic model of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Nonlinear control with hysteresis deadzone using the sliding sector theory with continued input function in the sector is proposed.

A Study on the Dynamic Characteristics of Robot Hand based on Segmented Control (구간분할 제어를 이용한 로봇핸드의 동특성에 관한 연구)

  • Jeong S.H.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.310-313
    • /
    • 2005
  • In recent years, as the robot technology is developed, the researches on the artificial muscle actuator that enable robot to move dexterously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electro-active polymer. These actuators have the higher energy density than the electro-mechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper, the simulation of anthropomophic robotic hand is performed using ADAMS and the segmented binary control for reducing the hysteresis of SMA is proposed. SMA is controlled by thermo-electric module. The relations between the force and the hysteresis are developed to verify the validity of the suggested method.

  • PDF

Compensator Design to Improve the Dynamic Performance of Piezoelectric Actuators (압전 구동 소자의 동적 성능 향상을 위한 보상기의 설계)

  • 문준희;강성범;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.505-507
    • /
    • 2004
  • This paper attempts to compensate the nonlinearity between the input voltage and the output displacement of the piezoelectric stack in dynamic actuation by the following two ways. Firstly, the charge steering by circuit configuration reduces the hysteresis of piezoelectric actuator remarkably. However, it makes the ripple in positioning due to the phase lag and noise induced from the elements of the long closed loop. Secondly, the feedforward control by neural network compensates the hysteresis of the piezoelectric actuators effectively with the appropriate selection of the input variables for the training. The improvement of the dynamic performance of the piezoelectric actuators by the developed linearization technique is verified by experiments.

  • PDF

A Improved Method of Determining Everett Function with Logarithm Function and Least Square Method

  • Hong, Sun-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.16-21
    • /
    • 2008
  • For Preisach model, Everett function from the transient curves is needed to simulate the hysteresis phenomena. However it becomes very difficult to get the function if the it would be made only from experiments. In this paper, a simple and stable procedure using least square method and logarithm function to determine the Everett function which follows the Gauss distribution for interaction field axis is proposed. The characteristics of the parameters used in this procedure are also presented. The proposed method is applied to implement hysteresis loops. The simulation for hysteresis loop is compared with experiments and good agreements could be shown.

A Study on the Variable Hysteresis Current Mode Control Method for Power Factor Improvement of the Single Phase Boost Converter (단상 부스터 콘버터의 입력역률 개선을 위한 가변 밴드폭 제어방식에 관한 연구)

  • 김철우;권순재;유동욱;박성준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.3
    • /
    • pp.36-43
    • /
    • 1994
  • Many new electronic products are required to have a near unity power factor and a distortion free current input waveform. In this paper, single phase AC to DC Boost-Converter which is controlled with continuous conduction mode(CCM) is analyzed. Each parameter is determined for variable hysteresis current mode and real time simulation results showed high power factor possible. l(kW] boost converter was designed and constructed accordingly. Experimental results to load and parameter variations are well similar to the simulation results.

  • PDF

A Novel Direct Torque Control of Induction Machines based on Stator Flux (고정자 자속을 기반으로 한 유도전동기의 새로운 직접 토크 제어)

  • 박준현;정종진;최종우;김흥근;노의철;부경대학교전기제어계측공학부조교수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.297-302
    • /
    • 2002
  • The direct torque control(DTC) of induction machines has the advantages of a simple control scheme and a very quick and robust torque response and its application is extended in the traction field. However, some drawbacks of the conventional DTC strategy using a hysteresis controller are the relatively large torque ripple in the steady state and the variation of switching frequency according to the amplitude of hysteresis bands and the motor operating conditions. In this paper, a navel direct t()roue control scheme of induction machines based on stator flux control and Space Vector Modulation Is proposed to acquire the advantage of a fixed switching period and the minimization of the torque and stator current ripple in a wide speed range. The effect of proposed method has been proven by simulations and experiments.