• 제목/요약/키워드: Hysteresis 제어기

Search Result 116, Processing Time 0.024 seconds

Precision Position Control of Piezoactuator Using Inverse Hysteresis Model (역 히스테리시스 모델을 이용한 압전 구동기의 정밀위치 제어)

  • 김정용;이병룡;양순용;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.349-352
    • /
    • 1997
  • A Piezoelectric actuator yields hysteresis effect due to its composed ferroelectric. Hysteresis nonlinearity is neglected when a piezoelectric actuator moves with short stroke. However when it moves with long stroke and high frequency, the hysteresis nonlinearity can not be neglected. The hysteresis nonlinearity of piezoelectric actuator degrades the control performance in precision position control. In this paper, in order to improve the control performance of piezoelectric actuator, an inverse modeling scheme is proposed to compensate the hysteresis nonlinearity problem. And feedforward-feedforward-feedback controller is proposed to give a good tracking performance. The Feedforward controller is inverse hysteresis model, and PID control is sued as a feedback controller. To show the feasibility of the proposed controller and hysteresis modeling, some experiments have been carried out. It is concluded hat the proposed control scheme gives good tracking performance.

  • PDF

Position Tracking Control of Flexible Piezo-beam Considering Actuator Hysteresis (작동기 히스테리시스를 고려한 유연피에조빔의 위치추적제어)

  • Nguyen, Phuong-Bac;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.415-420
    • /
    • 2009
  • This paper presents a position tracking control of a flexible beam using the piezoelectric actuator. This is achieved by implementing both feedforward hysteretic compensator of the actuator and PID feedback controller. The Preisach model is adopted to develop the feedforward hysteretic compensator. In the design of the compensator, estimated displacement of the piezoceramic actuator is used on the basis of the limiting triangle database that results from collecting data of the main reversal curve and the first order ascending curves. Experimental implementation is conducted for position tracking control and performance comparison is made between a PID feedback controller without considering the effect of hysteresis, and a PID feedback controller integrated with the feedforward hysteretic compensator.

  • PDF

Precision Position Control of a Fast Tool Servo Using Piezoelectric Actuators (압전 구동기를 이용한 미소절삭 공구대의 정밀위치제어)

  • Song, J.W.;Kim, S.H.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.50-57
    • /
    • 1997
  • A fast tool servo (FTS) for diamond turning improves machining accuracy by quickly compensating relative position errors between the cutter and the workpiece. Therefore, the FTS needs to have large band-width with good tracking performance. Serious hysteresis nonlinearity of PZT actuators used in the FTS, however, deteriorates fast tracking performance. Several types of feedforward hysteresis compensators and feedback controllers are tested to improve tracking performance. Through simulations and experiments, control structure which yields the smallest tracking error is selected. The maximum peak to peak error in tracking a sinusoidal waveform is reduced by one fifth compared to that of a regular PID controller.

  • PDF

Modeling and Motion Control of Piezoelectric Actuator for the Inchworm : Part 2. Motion Control of Inchworm Using Sliding Mode Method (이송자벌레를 위한 압전소자의 모델링 및 운동제어 : 2. 슬라이딩 모드법에 의한 이송자벌레의 운동제어)

  • Kim, Young-Shik;Park, Euncheol;Kim, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.878-884
    • /
    • 2005
  • This paper presents an algorithm for the precision motion control based on the dynamic characteristics of piezoelectric actuators in the inchworm. The dynamic characteristics are identified by the frequency domain modeling technique using the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The Sliding mode controller and the Kalman filter are designed for motion control of the inch-worm.

Sliding Mode Controller Design for Biped Robot (이족보행로봇을 위한 슬라이딩 제어기 설계)

  • Park, In-Gyu;Kim, Jin-Geol;Kim, Ki-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage (PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계)

  • Park, J.S.;Jeong, Kyu-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.465-472
    • /
    • 2012
  • This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder. The system dynamics is very complicated because the movement of the table is governed by both the mechanical characteristics and those of the PZT actuator. So that, the dynamics of the stage was modeled roughly in this paper, and the overall system was formularized to solve the small gain problem. A series of experiments was conducted in order to verify the usefulness of the proposed algorithm. From the experimental results, the positioning performance such as the accuracy, the rise time and the hysteresis nonlinearity were greatly improved.

A Position Control System of SRM using Digital Hysteresis Controller (디지털 히스테리시스 제어기를 이용한 SRM의 위치제어시스템)

  • Baik Won-Sik;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Kim Min-Huei;Hwang Don-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.41-45
    • /
    • 2001
  • This paper presents an implementation of motion control system of Switched Reluctance Motor (SRM) using digital hysteresis controller by TMS320F240 DSP. SRM position control system possess several advantages over other motors, including high efficiency, simple structure, low cost, and four-quadrant operation at a wide speed range, especially for the servo drive systems with precision, stability and fast response characteristics in the industrial applications. In the suggested motion control system, position control using digital hysteresis controller is developed, and is evaluated using experimental testing. The developed system for cost reduction and high-performance by fully digital controller is shown a good response characteristic of motion control results.

  • PDF

A Study on the Variable Hysteresis Current Mode Control Method for Power Factor Improvement of the Single Phase Boost Converter (단상 부스터 콘버터의 입력역률 개선을 위한 가변 밴드폭 제어방식에 관한 연구)

  • 김철우;권순재;유동욱;박성준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.3
    • /
    • pp.36-43
    • /
    • 1994
  • Many new electronic products are required to have a near unity power factor and a distortion free current input waveform. In this paper, single phase AC to DC Boost-Converter which is controlled with continuous conduction mode(CCM) is analyzed. Each parameter is determined for variable hysteresis current mode and real time simulation results showed high power factor possible. l(kW] boost converter was designed and constructed accordingly. Experimental results to load and parameter variations are well similar to the simulation results.

  • PDF

A Hysteresis Current Controller with Improved Voltage Waveform using N.P.C Structure (N.P.C 구조에 의한 히스테리시스 전류제어기의 전압파형 개선)

  • 김윤호;이병송
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.51-57
    • /
    • 1997
  • A new current controlled PWM technique with N.P.C structure is proposed in this paper. A current controlled PWM technique with neutral-point-clamped pulsewidth modulation inverter composed of main switching devices which operates as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential is described. This inverter output contains less harmonic content as compared with that of a conventional current controlled PWM type. In addition, the proposed current controlled PWM technique has lower switching frequency than that of conventional current controlled PWM technique at the same current limit. Two inverters are compared analytically. The improved voltage waveform of current controlled PWM with N.P.C structure is analyzed and the performance is investigated by the computer simulation.

  • PDF

The Design of Sliding Mode Controller for Precision Stage using Genetic Algolithm (유전자 알고리즘을 이용한 정밀 스테이지의 슬라이딩모드 제어기 설계에 관한 연구)

  • Cho, Baek-Hee;Seong, Hwal-Gyeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.101-107
    • /
    • 2010
  • This paper presents motion control of the precision stage composed of the piezoelectric actuator and flexible hinges. The stage shows approximately 27% overshoot when the stage was applied to 30V square wave input voltage. Also, the stage shows nonlinear response characteristics including hysteresis. This paper proposes feedback control technique to suppress the phenomenon of hysteresis and overshoot using the sliding mode control scheme with the integrator. Also, this paper suggests the method that searches important parameters of sliding mode control and observer using Genetic Algorithm. To demonstrate the effectiveness of the proposed control algorithm, experimental validations are performed.