• 제목/요약/키워드: Hypoxic

검색결과 488건 처리시간 0.021초

Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures

  • Kim, Eun-Hee;Won, Ji-Hee;Hwang, Inhwa;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • 제13권4호
    • /
    • pp.141-147
    • /
    • 2013
  • Hypoxia has been shown to promote inflammation, including the release of proinflammatory cytokines, but it is poorly investigated how hypoxia directly affects inflammasome signaling pathways. To explore whether hypoxic stress modulates inflammasome activity, we examined the effect of cobalt chloride ($CoCl_2$)-induced hypoxia on caspase-1 activation in primary mixed glial cultures of the neonatal mouse brain. Unexpectedly, hypoxia induced by oxygen-glucose deprivation or $CoCl_2$ treatment failed to activate caspase-1 in microglial BV-2 cells and primary mixed glial cultures. Of particular interest, $CoCl_2$-induced hypoxic condition considerably inhibited NLRP3-dependent caspase-1 activation in mixed glial cells, but not in bone marrow-derived macrophages. $CoCl_2$-mediated inhibition of NLRP3 inflammasome activity was also observed in the isolated brain microglial cells, but $CoCl_2$ did not affect poly dA:dT-triggered AIM2 inflammasome activity in mixed glial cells. Our results collectively demonstrate that $CoCl_2$-induced hypoxia may negatively regulate NLRP3 inflammasome signaling in brain glial cells, but its physiological significance remains to be determined.

Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells

  • Kang, In Sook;Suh, Joowon;Lee, Mi-Ni;Lee, Chaeyoung;Jin, Jing;Lee, Changjin;Yang, Young Il;Jang, Yangsoo;Oh, Goo Taeg
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.118-123
    • /
    • 2020
  • Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair.

Serial Expression of Hypoxia Inducible Factor-$1{\alpha}$ and Neuronal Apoptosis in Hippocampus of Rats with Chronic Ischemic Brain

  • Yu, Chi-Ho;Moon, Chang-Taek;Sur, Jung-Hyang;Chun, Young-Il;Choi, Won-Ho;Yhee, Ji-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제50권6호
    • /
    • pp.481-485
    • /
    • 2011
  • Objective : The purpose of this study is to investigate serial changes of hypoxia-inducible factor $1{\alpha}$ (HIF-$1{\alpha}$), as a key regulator of hypoxic ischemia, and apoptosis of hippocampus induced by bilateral carotid arteries occlusion (BCAO) in rats. Methods : Adult male Wistar rats were subjected to the permanent BCAO. The time points studied were 1, 2, 4, 8, and 12 weeks after occlusions, with n=6 animals subjected to BCAO, and n=2 to sham operation at each time point, and brains were fixed by intracardiac perfusion fixation with 4% neutral-buffered praraformaldehyde for brain section preparation. Immunohistochemistry (IHC), western blot and terminal uridine deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed to evaluate HIF-$1{\alpha}$ expression and apoptosis. Results : In IHC and western blot, HIF-$1{\alpha}$ levels were found to reach the peak at the 2nd week in the hippocampus, while apoptotic neurons, in TUNEL assay, were maximal at the 4th week in the hippocampus, especially in the cornu ammonis 1 (CA1) region. HIF-$1{\alpha}$ levels and apoptosis were found to fluctuate during the time course. Conclusion : This study showed that BCAO induces acute ischemic responses for about 4 weeks then chronic ischemia in the hippocampus. These in vivo data are the first to show the temporal sequence of apoptosis and HIF-$1{\alpha}$ expression.

Changes in hematoserological profiles and leukocyte redistribution in rainbow trout (Oncorhynchus mykiss) under progressive hypoxia

  • Roh, HyeongJin;Kim, Bo Seong;Kim, Ahran;Kim, Nameun;Lee, Mu Kun;Park, Chan-Il;Kim, Do-Hyung
    • 한국어병학회지
    • /
    • 제33권1호
    • /
    • pp.23-34
    • /
    • 2020
  • In recent years, global warming is causing dramatic environmental changes and deterioration, such as hypoxia, leading to reduced survival rate and growth performance of farmed aquatic animals. Hence, understanding systemic immuno-physiological changes in fish under environmental stress might be important to maximize aquaculture production. In this study, we investigated physiological changes in rainbow trout exposed to hypoxic stress by monitoring changes in blood chemistry, leukocyte population, and expression levels of related cytokine genes. Hematological and serological factors were evaluated in blood obtained from rainbow trout sampled at a dissolved level of 4.6 mg O2 L-1 and 2.1 mg O2 L-1. Blood and head kidney tissue obtained at each sampling time point were used to determine erythrocyte size, leukocyte population, and cytokine gene expression. The level of LDH and GPT in fish under progressive hypoxia were significantly increased in plasma. Likewise, the (Granulocyte + Macrophage)/lymphocyte ratio (%) of fish exposed to hypoxia was significantly lower than that in fish in the control group. Such changes might be due to the rapid movement of lymphocytes in fish exposed to acute hypoxia. In this study, significant up-regulation in expression levels of IL-1β and IL-6 gene appeared to be involved in the redistribution of leukocytes in rainbow trout. This is the first study to demonstrate the involvement of cytokines in leukocyte trafficking in fish exposed to hypoxia. It will help us understand systemic physiological changes and mechanisms involved in teleost under hypoxic stress.

Neuroprotective effects of mild hypoxia in organotypic hippocampal slice cultures

  • Kim, Seh Hyun;Lee, Woo Soon;Lee, Na Mi;Chae, Soo Ahn;Yun, Sin Weon
    • Clinical and Experimental Pediatrics
    • /
    • 제58권4호
    • /
    • pp.142-147
    • /
    • 2015
  • Purpose: The aim of this study was to investigate the potential effects of mild hypoxia in the mature and immature brain. Methods: We prepared organotypic slice cultures of the hippocampus and used hippocampal tissue cultures at 7 and 14 days in vitro (DIV) to represent the immature and mature brain, respectively. Tissue cultures were exposed to 10% oxygen for 60 minutes. Twenty-four hours after this hypoxic insult, propidium iodide fluorescence images were obtained, and the damaged areas in the cornu ammonis 1 (CA1), CA3, and dentate gyrus (DG) were measured using image analysis. Results: In the 7-DIV group compared to control tissue, hypoxia-exposed tissue showed decreased damage in two regions (CA1: $5.59%{\pm}2.99%$ vs. $4.80%{\pm}1.37%$, P=0.900; DG: $33.88%{\pm}12.53%$ vs. $15.98%{\pm}2.37%$, P=0.166), but this decrease was not statistically significant. In the 14-DIV group, hypoxia-exposed tissue showed decreased damage compared to control tissues; this decrease was not significant in the CA3 ($24.51%{\pm}6.05%$ vs. $18.31%{\pm}3.28%$, P=0.373) or DG ($15.72%{\pm}3.47%$ vs. $9.91%{\pm}2.11%$, P=0.134), but was significant in the CA1 ($50.91%{\pm}5.90%$ vs. $32.30%{\pm}3.34%$, P=0.004). Conclusion: Although only CA1 tissues cultured for 14 DIV showed significantly less damage after exposure to hypoxia, the other tissues examined in this study showed a tendency towards less damage after hypoxic exposure. Therefore, mild hypoxia might play a protective role in the brain.

X-linked recessive myotubular myopathy with MTM1 mutations

  • Han, Young-Mi;Kwon, Kyoung-Ah;Lee, Yun-Jin;Nam, Sang-Ook;Park, Kyung-Hee;Byun, Shin-Yun;Kim, Gu-Hwan;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • 제56권3호
    • /
    • pp.139-142
    • /
    • 2013
  • X-linked recessive myotubular myopathy (XLMTM) is a severe congenital muscle disorder caused by mutations in the MTM1 gene and characterized by severe hypotonia and generalized muscle weakness in affected males. It is generally a fatal disorder during the neonatal period and early infancy. The diagnosis is based on typical histopathological findings on muscle biopsy, combined with suggestive clinical features. We experienced a case of a newborn who required intubation and ventilator care because of profound hypotonia and respiratory difficulty. The preliminary diagnosis at the time of request for retrieval was hypoxic ischemic encephalopathy, but the infant was clinically reevaluated for generalized weakness and muscle atrophy. Muscle biopsies showed variability in fiber size and centrally located nuclei in nearly all the fibers. We detected an MTM1 gene mutation of c.1261-1C>A in the intron 10 region, and diagnosed the neonate with myotubular myopathy. The same mutation was detected in his mother.

머리하향기울기 자세에서 운동 중 저산소호흡이 심혈관계반응에 미치는 영향 (Influence of Hypoxic Exercise at Head Down Tilt on Cardiovascular Responses)

  • 김경태;이대택
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.207-214
    • /
    • 2009
  • 본 연구는 미세중력 모델인 머리하향기울기(Head Down Tilt; HDT) 자세에서 운동 중저산소호흡이 심혈관계 반응에 미치는 영향을 알아보는데 있었다. 8명의 건강한 남성($23{\pm}2$ 세, 신장 $176{\pm}4$ cm, 체중 $75{\pm}8$ kg)은 4가지 조건(앉은 자세에서 정상공기 호흡: SN, 앉은 자세에서 13% 산소호흡; SH, HDT 자세에서 정상공기 호흡; SH, HDT 자세에서 13% 산소호흡; HH)에서 최대산소섭취량의 약 40% 운동강도로 15분간 싸이클링을 실시하였다. 심박수는 SH그룹이 SN그룹보다 높았고(p<0.05), HH그룹이 SH그룹보다 높게 나타났다(p<0.05). 혈중산소포화도는 SH그룹이 SN그룹보다 유의한 감소를 나타내었다(p<0.05). 이완기혈압(p<0.05) 및 평균동맥압(p<0.05)은 안정시 앉은 자세에서보다 HDT 자세에서 유의하게 낮아졌다. 체액변인인 Hb, Hct과 전해질 변인인 나트륨, 칼륨, 염소는 모든 그룹에서 차이가 나타나지 않았다(p>0.05). 대사적 변인 중 Lactate는 SH그룹이 SN그룹보다 유의한 증가를 나타내었다(p<0.05). 결론적으로, 저산소호흡과 자세의 이중자극은 심혈관계반응에 영향을 주지 않았다.

  • PDF

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

주산기 뇌손상의 신경병리적 기전 (Neuropathological Mechanisms of Perinatal Brain Injury)

  • 송주영;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제15권4호
    • /
    • pp.199-207
    • /
    • 2003
  • 신생아의 정상적인 발달을 저해하고 조기 사망의 주된 원인이 되고 있는 주산기 뇌손상에 관한 신경병리적 기전을 살펴보고자 하였다. 발달하고 있는 과정에서의 주산기 뇌손상은 주로 저산소성-허혈성 뇌손상과 출혈성 뇌손상에 의한 경우가 많다. 저산소성-허혈성 뇌손상과 관련하여 에너지 부전, 세포흥분독성, 미성숙 백질의 선택적 취약성을 고려해 볼 수 있다. 첫번째, 세포호흡에 관여하는 미토콘드리아의 손상과 관련하여 즉각적인 병리와 함께 지연된 양상의 손상을 보인다. 미토콘드리아의 호흡률이 감소하고 칼슘이온의 농도가 상승하여 세포 괴사 및 세포사멸 과정이 진행된다. 두번째, 흥분성 아미노산과 관련하여 미성숙한 뇌에는 NMDA 수용기-채널 복합체의 기능이 매우 풍부하고, phosphoinositide 가수분해가 높아서 흥분독성에 상당히 취약하다. 세 번째, 수초 형성에 중요한 역할을 하는 희돌기교세포가 주산기 뇌손상 특히, 저산소성-허혈성 손상에 취약하다. 희돌기교세포는 글루타메이트에 의한 자유유리기과 사이토카인 손상에 취약하다. 뇌출혈과 관련하여, 미성숙한 뇌는 뇌실 주위에 혈관층이 풍부하나 매우 약한 상태로 재관류 혹은 혈류의 증가로 인해 쉽게 파열된다. 특히 32주 이내인 경우 이러한 손상으로 인해 뇌실주위 백질연화증이 초래된다.

  • PDF

Hypoxia Inducible Factor-1α Directly Induces the Expression of Receptor Activator of Nuclear Factor-κB Ligand in Chondrocytes

  • Baek, Kyunghwa;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제41권1호
    • /
    • pp.9-15
    • /
    • 2016
  • Receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) is an osteoblast/stromal cell-derived essential factor for osteoclastogenesis. During endochondral bone formation, hypertrophic chondrocytes calcify cartilage matrix that is subsequently resorbed by osteoclasts in order to be replaced by new bone. Hypoxia-induced upregulation of RANKL expression has been previously demonstrated in an in vitro system using osteoblasts; however, the involved mechanism remains unclear in chondrocytes. In the present study, we investigated whether hypoxia regulates RANKL expression in ATDC5 cells, a murine chondrogenic cell line, and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) mediates hypoxia-induced RANKL expression by transactivating the RANKL promoter. The expression levels of RANKL mRNA and protein, as well as HIF-$1{\alpha}$ protein, were significantly increased in ATDC5 cells under hypoxic condition. Constitutively active HIF-$1{\alpha}$ alone significantly increased the levels of RANKL expression under normoxic conditions, whereas dominant negative HIF-$1{\alpha}$ reduced hypoxia-induced RANKL expression. HIF-$1{\alpha}$ increased RANKL promoter reporter activity in a HIF-$1{\alpha}$ binding element-dependent manner in ATDC5 cells. Hypoxia-induced RANKL levels were much higher in differentiated ATDC5 cells, as compared to proliferating ATDC5 cells. These results suggested that under hypoxic conditions, HIF-$1{\alpha}$ mediates induction of RANKL expression in chondrocytes; in addition, hypoxia plays a role in osteoclastogenesis during endochondral bone formation, at least in part, through the induction of RANKL expression in hypertrophic chondrocytes.