DOI QR코드

DOI QR Code

Neuroprotective effects of mild hypoxia in organotypic hippocampal slice cultures

  • Kim, Seh Hyun (Department of Pediatrics, Chung-Ang University College of Medicine) ;
  • Lee, Woo Soon (Department of Pediatrics, Chung-Ang University College of Medicine) ;
  • Lee, Na Mi (Department of Pediatrics, Chung-Ang University College of Medicine) ;
  • Chae, Soo Ahn (Department of Pediatrics, Chung-Ang University College of Medicine) ;
  • Yun, Sin Weon (Department of Pediatrics, Chung-Ang University College of Medicine)
  • Received : 2014.07.25
  • Accepted : 2014.09.12
  • Published : 2015.04.15

Abstract

Purpose: The aim of this study was to investigate the potential effects of mild hypoxia in the mature and immature brain. Methods: We prepared organotypic slice cultures of the hippocampus and used hippocampal tissue cultures at 7 and 14 days in vitro (DIV) to represent the immature and mature brain, respectively. Tissue cultures were exposed to 10% oxygen for 60 minutes. Twenty-four hours after this hypoxic insult, propidium iodide fluorescence images were obtained, and the damaged areas in the cornu ammonis 1 (CA1), CA3, and dentate gyrus (DG) were measured using image analysis. Results: In the 7-DIV group compared to control tissue, hypoxia-exposed tissue showed decreased damage in two regions (CA1: $5.59%{\pm}2.99%$ vs. $4.80%{\pm}1.37%$, P=0.900; DG: $33.88%{\pm}12.53%$ vs. $15.98%{\pm}2.37%$, P=0.166), but this decrease was not statistically significant. In the 14-DIV group, hypoxia-exposed tissue showed decreased damage compared to control tissues; this decrease was not significant in the CA3 ($24.51%{\pm}6.05%$ vs. $18.31%{\pm}3.28%$, P=0.373) or DG ($15.72%{\pm}3.47%$ vs. $9.91%{\pm}2.11%$, P=0.134), but was significant in the CA1 ($50.91%{\pm}5.90%$ vs. $32.30%{\pm}3.34%$, P=0.004). Conclusion: Although only CA1 tissues cultured for 14 DIV showed significantly less damage after exposure to hypoxia, the other tissues examined in this study showed a tendency towards less damage after hypoxic exposure. Therefore, mild hypoxia might play a protective role in the brain.

Keywords

References

  1. Lawn J, Shibuya K, Stein C. No cry at birth: global estimates of intrapartum stillbirths and intrapartum-related neonatal deaths. Bull World Health Organ 2005;83:409-17.
  2. Gonzalez FF, Miller SP. Does perinatal asphyxia impair cognitive function without cerebral palsy? Arch Dis Child Fetal Neonatal Ed 2006;91:F454-9. https://doi.org/10.1136/adc.2005.092445
  3. Marlow N, Rose AS, Rands CE, Draper ES. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed 2005;90:F380-7. https://doi.org/10.1136/adc.2004.067520
  4. van Handel M, Swaab H, de Vries LS, Jongmans MJ. Long-term cognitive and behavioral consequences of neonatal encephalopathy following perinatal asphyxia: a review. Eur J Pediatr 2007;166:645-54. https://doi.org/10.1007/s00431-007-0437-8
  5. Kliegman RM, Stanton B, St. Geme JW III, Schor NF, Behrman RE, editors. Nelson textbook of pediatrics. 19th ed. Philadelphia:Elsevier Saunders, 2011.
  6. Xu GP, Dave KR, Vivero R, Schmidt-Kastner R, Sick TJ, Perez-Pinzon MA. Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures. Brain Res 2002;952:153-8. https://doi.org/10.1016/S0006-8993(02)02988-8
  7. Kristensen BW, Noraberg J, Zimmer J. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Brain Res 2001;917:21-44. https://doi.org/10.1016/S0006-8993(01)02900-6
  8. Pringle AK, Thomas SJ, Signorelli F, Iannotti F. Ischaemic preconditioning in organotypic hippocampal slice cultures is inversely correlated to the induction of the 72 kDa heat shock protein (HSP72). Brain Res 1999;845:152-64. https://doi.org/10.1016/S0006-8993(99)01916-2
  9. Shamloo M, Rytter A, Wieloch T. Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience 1999;93:81-8. https://doi.org/10.1016/S0306-4522(99)00137-2
  10. Gidday JM, Fitzgibbons JC, Shah AR, Park TS. Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett 1994;168:221-4. https://doi.org/10.1016/0304-3940(94)90455-3
  11. Khaspekov L, Shamloo M, Victorov I, Wieloch T. Sublethal in vitro glucose-oxygen deprivation protects cultured hippocampal neurons against a subsequent severe insult. Neuroreport 1998;9:1273-6. https://doi.org/10.1097/00001756-199805110-00003
  12. Gorgias N, Maidatsi P, Tsolaki M, Alvanou A, Kiriazis G, Kaidoglou K, et al. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia. Brain Res 1996;714:215-25. https://doi.org/10.1016/0006-8993(95)01548-5
  13. Holopainen IE. Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res 2005;30:1521-8. https://doi.org/10.1007/s11064-005-8829-5
  14. Youn YC, Kwon OS, Chae SA. The Bcl-2 and NeuN expressions and morphological changes in organotypic explant culture of rat hippocampus. J Korean Neurol Assoc 2004;22:368-74.
  15. Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 1991;37:173-82. https://doi.org/10.1016/0165-0270(91)90128-M
  16. Tarnow-Mordi WO. Room air or oxygen for asphyxiated babies? Lancet 1998;352:341-2. https://doi.org/10.1016/S0140-6736(05)60464-3
  17. Rousset CI, Baburamani AA, Thornton C, Hagberg H. Mitochondria and perinatal brain injury. J Matern Fetal Neonatal Med 2012;25 Suppl 1:35-8. https://doi.org/10.3109/14767058.2012.666398
  18. Chen J, Liao W, Gao W, Huang J, Gao Y. Intermittent hypoxia protects cerebral mitochondrial function from calcium overload. Acta Neurol Belg 2013;113:507-13. https://doi.org/10.1007/s13760-013-0220-8
  19. Eldadah BA, Faden AI. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 2000;17:811-29. https://doi.org/10.1089/neu.2000.17.811
  20. Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 2001;21:99-109. https://doi.org/10.1097/00004647-200102000-00001
  21. Badaut J, Hirt L, Price M, de Castro Ribeiro M, Magistretti PJ, Regli L. Hypoxia/hypoglycemia preconditioning prevents the loss of functional electrical activity in organotypic slice cultures. Brain Res 2005;1051:117-22. https://doi.org/10.1016/j.brainres.2005.05.063
  22. Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, et al. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 1998;29:1937-50. https://doi.org/10.1161/01.STR.29.9.1937
  23. Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FC. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res 2000;863:169-81. https://doi.org/10.1016/S0006-8993(00)02133-8
  24. Gage AT, Stanton PK. Hypoxia triggers neuroprotective alterations in hippocampal gene expression via a heme-containing sensor. Brain Res 1996;719:172-8. https://doi.org/10.1016/0006-8993(96)00092-3
  25. Emerson MR, Nelson SR, Samson FE, Pazdernik TL. A global hypoxia preconditioning model: neuroprotection against seizureinduced specific gravity changes (edema) and brain damage in rats. Brain Res Brain Res Protoc 1999;4:360-6. https://doi.org/10.1016/S1385-299X(99)00041-0
  26. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 2002;22:6401-7. https://doi.org/10.1523/JNEUROSCI.22-15-06401.2002
  27. Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J Neurochem 2003;84:3-9.
  28. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 2000;48:285-96. https://doi.org/10.1002/1531-8249(200009)48:3<285::AID-ANA2>3.0.CO;2-8
  29. Simon RP. Hypoxia versus ischemia. Neurology 1999;52:7-8. https://doi.org/10.1212/WNL.52.1.7
  30. Tang Y, Nee AC, Lu A, Ran R, Sharp FR. Blood genomic expression profile for neuronal injury. J Cereb Blood Flow Metab 2003;23:310-9. https://doi.org/10.1097/01.WCB.0000048518.34839.DE
  31. Wise-Faberowski L, Robinson PN, Rich S, Warner DS. Oxygen and glucose deprivation in an organotypic hippocampal slice model of the developing rat brain: the effects on N-methyl-D-aspartate subunit composition. Anesth Analg 2009;109:205-10. https://doi.org/10.1213/ane.0b013e3181a27e37
  32. Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 1999;11:4159-70. https://doi.org/10.1046/j.1460-9568.1999.00845.x
  33. Schurr A, Payne RS, Tseng MT, Gozal E, Gozal D. Excitotoxic preconditioning elicited by both glutamate and hypoxia and abolished by lactate transport inhibition in rat hippocampal slices. Neurosci Lett 2001;307:151-4. https://doi.org/10.1016/S0304-3940(01)01937-1
  34. Zhang WL, Lu GW. Changes of adenosine and its A(1) receptor in hypoxic preconditioning. Biol Signals Recept 1999;8:275-80. https://doi.org/10.1159/000014598
  35. Ginis I, Jaiswal R, Klimanis D, Liu J, Greenspon J, Hallenbeck JM. TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. J Cereb Blood Flow Metab 2002;22:142-52. https://doi.org/10.1097/00004647-200202000-00002

Cited by

  1. High altitude hypoxia on brain ultrastructure of rats and Hsp70 expression changes vol.33, pp.2, 2015, https://doi.org/10.1080/02688697.2018.1519108