• Title/Summary/Keyword: Hypoxia-Ischemia

Search Result 91, Processing Time 0.025 seconds

The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts

  • Son, Euncheol;Lee, Dongju;Woo, Chul-Woong;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2020
  • An in vitro model for ischemia/reperfusion injury has not been well-established. We hypothesized that this failure may be caused by serum deprivation, the use of glutamine-containing media, and absence of acidosis. Cell viability of H9c2 cells was significantly decreased by serum deprivation. In this condition, reperfusion damage was not observed even after simulating severe ischemia. However, when cells were cultured under 10% dialyzed FBS, cell viability was less affected compared to cells cultured under serum deprivation and reperfusion damage was observed after hypoxia for 24 h. Reperfusion damage after glucose or glutamine deprivation under hypoxia was not significantly different from that after hypoxia only. However, with both glucose and glutamine deprivation, reperfusion damage was significantly increased. After hypoxia with lactic acidosis, reperfusion damage was comparable with that after hypoxia with glucose and glutamine deprivation. Although high-passage H9c2 cells were more resistant to reperfusion damage than low-passage cells, reperfusion damage was observed especially after hypoxia and acidosis with glucose and glutamine deprivation. Cell death induced by reperfusion after hypoxia with acidosis was not prevented by apoptosis, autophagy, or necroptosis inhibitors, but significantly decreased by ferrostatin-1, a ferroptosis inhibitor, and deferoxamine, an iron chelator. These data suggested that in our SIR model, cell death due to reperfusion injury is likely to occur via ferroptosis, which is related with ischemia/reperfusion-induced cell death in vivo. In conclusion, we established an optimal reperfusion injury model, in which ferroptotic cell death occurred by hypoxia and acidosis with or without glucose/glutamine deprivation under 10% dialyzed FBS.

Protective Effect of Bupleuri Radix on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil (PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 시호 세포보호효과)

  • 최삼열;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.113-124
    • /
    • 2002
  • Objects: This research was conducted to investigate the protective effect of Bupleuri Radix against ischemic damage using PC12 cells and global ischemia in gerbils, Methods: To observe the protective effect of Bupleuri Radixon ischemic damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Bupleuri Radix during ischemic damage. Gerbils were divided into three groups: a normal group, a 5-minute two-vessel occlusion (2VO) group and a Bupleun Radix administered group after 2VO. The CCAs were occluded by microclip for 5 minutes, Bupleuri Radix was administered orally for 7 days after 2VO. Histological analysis was performed on the 7th day. For histological analysis, the brain tissue was stained with 1 % of cresyl violet solution. Results: 1. Bupleuri Radix has a protective effect against ischemia in the CA1 area of the gerbil's hippocampus 7 days after 5-minute occlusion. 2. In the hypoxia/reperfusion model using PC12 cells, the Bupleuri Radix has a protective effect against ischemia in the dose of 0.2{\;}\mu\textrm{g}/ml,2{\;}\mu\textrm{g}/ml{\;}and{\;} 20{\;}\mu\textrm{g}/ml$. 3. Bupleuri Radix increased the activities of glutathione peroxidase and catalase. 4. The increased activity of superoxidedismutase (SOD) by ischemic damage might have been induced as an act of self-protection. This study suggests that Bupleuri Radix has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils. Bupleuri Radix also has protective effect on a hypoxia/reperfusion cell culture model using PC12 cells. Conclusions: Bupleuri Radix has protective effect against ischemic brain damage during the early stages of ischemia.

  • PDF

Effect of Hypoxia-Ischemia on Striatal Monoamine Metabolism in Neonatal Rat Brains (저산소-허혈 손상이 신생 흰쥐의 뇌 선조체(Striatum) Monoamine 대사에 미치는 영향)

  • Jee, Youn Hee;Kim, Hyung Gun;Park, Woo Sung;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.789-794
    • /
    • 2003
  • Purpose : We intended to evaluate the effect of hypoxia-ischemia on extracellular striatal monoamine metabolism in neonatal rat brains by in vivo microdialysis. Methods : The right common carotid arteries of five or six-day old rats were surgically ligated, and the probes for microdialysis were inserted into the right striatum with stereotaxic instrument. After stabilization for two hours, artificial cerebrospinal fluid was infused via the probe for microdialysis and samples were collected during hypoxia-ischemia and recovery periods at 20 minute intervals. The concentrations of DA(dopamine), DOPAC(3,4-di-hydroxyphenyl acetic acid), HVA(homovanillic acid), NE(norepinephrine), and 5-HIAA(5-hydroxy indole-acetic acid) were measured by HPLC(high performance liquid chromatography) and the changes were analysed. Results : The striatal levels of dopamine metabolites such as DOPAC and HVA, were significantly decreased during hypoxia-ischemia, and increased to their basal level during reoxygenation(P<0.05). Dopamine mostly increased during hypoxia but statistically not significant(P>0.05). DOPAC showed the most remarkable decrease($23.0{\pm}4.2%$, P<0.05), during hypoxia-ischemia and increase to the basal levels during reoxygenation($120.8{\pm}54.9%$, P<0.05), and HVA showed the same pattern of changes as those of DOPAC during hypoxia-ischemia($35.3{\pm}7.6%$ of basal level, P<0.05) and reoxygenation ($105.8{\pm}32.3%$). However, the level of NE did not show significant changes during hypoxia-ischemia and reoxygenation. The levels of 5-HIAA decreased($74.9{\pm}3.1%$) and increased($118.1{\pm}7.8%$) during hypoxia-ischemia and reoxygenation, respectively(P<0.005). Conclusion : Hypoxia-ischemia had a significant influence on the metabolism of striatal monoamine in neonatal rat brains. These findings suggest that monoamine, especially dopamine, and its metabolites could have a significant role in the pathogenesis of hypoxic-ischemic injury of neonatal rat brains.

Role of Poly (ADP-ribose) Polymerase Activation in Chemical Hypoxia-Induced Cell Injury in Renal Epithelial Cells

  • Jung Soon-Hee
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.441-446
    • /
    • 2005
  • The molecular mechanism of ischemia/reperfusion injury remains unclear. Reactive oxygen species (ROS) are implicated in cell death caused by ischemia/reperfusion in vivo or hypoxia in vitro. Poly (ADP-ribose) polymerase (PARP) activation has been reported to be involved in hydrogen peroxide-induced cell death in renal epithelial cells. This study was therefore undertaken to evaluate the role of P ARP activation in chemical hypoxia in opossum kidney (OK) cells. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport. Exposure of OK cells to chemical hypoxia resulted in a time-dependent cell death. In OK cells subjected to chemical hypoxia, the generation of ROS was increased, and this increase was prevented by the $H_2O_2$ scavenger catalase. Chemical hypoxia increased P ARP activity and chemical hypoxia-induced cell death was prevented by the inhibitor of PARP activation 3-aminobenzamide. Catalase prevented OK cell death induced by chemical hypoxia. $H_2O_2$ caused PARP activation and $H_2O_2-induced$ cell death was prevented by 3-aminobenzamide. Taken together, these results indicate that chemical hypoxia-induced cell injury is mediated by PARP activation through H202 generation in renal epithelial cells.

  • PDF

Protective Effect of Aurantii Immaturus Fructus on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil (PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 지실의 세포보호효과 연구)

  • 김완식;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • Object : This research was performed to investigate the protective effect of Aurantii Immaturus Fructus against ischemic damage using PC12 cells and global ischemia in gerbils. Methods : To observe the protective effect of Aurantii Immaturus Fructus on ischemia damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Aurantii Immaturus Fructus during ischemic insult. Gerbils were divided into three groups : a normal group, a 5-min two-vessel occlusion (2VO) group, and an Aurantii Immaturus Fructus administered after 2VO group. The CCAs were occluded by microclip for 5 minutes. Aurantii Immaturus Fructus was administered orally for 7 days after 2VO. The histological analysis was performed at 7 days after the surgery. For histological analysis, the brain tissue was stained with 1% cresyl violet solution. Results : The results showed that 1. Aurantii Immaturus Fructus had a protective effect against ischemia in the CAI area of the gerbil hippocampus 7 days after 5-minute occlusion, 2. In the hypoxia/reperfusion model using PC12 cells, the Aurantii Immaturus Fructus had a protective effect against ischemia in the dose of $0.2{\;}\mu\textrm{g}/ml,{\;}2{\;}\mu\textrm{g}/ml{\;}and{\;}20{\;}\mu\textrm{g}/ml$ 3. Aurantii Immaturus Fructus increased the activities of glutathione peroxidase and catalase, 4. The activity of superoxide dismutase (SOD) was increased by ischemic damage, which might represent self protection. This study suggests that Aurantii Immaturus Fructus has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils, and it also has protective effects on a hypoxia/reperfusion cell culture model using PCq2 cells. Conclusions : Aurantii Immaturus Fructus has protective effects against ischemic brain damage at the early stage of ischemia.

  • PDF

Protective Effect of Angelicae Dahuri Radix on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil (PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 백지의 세포보호효과)

  • 이영효;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.110-121
    • /
    • 2003
  • Objective : This research was performed to investigate the protective effect of Angelicae Dahuri Radix against ischemic damage using PC12 cells and global ischemia in gerbils. Methods : To observe the protective effect of Angelicae Dahuri Radix on ischemia damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Angelicae Dahuri Radix during ischemic insult. Gerbils were divided into three groups : a normal group, a 5-min two-vessel occlusion (2VO) group, and an Angelicae Dahuri Radix administered after 2VO group. The CCAs were occluded by microclip for 5 minutes. Angelicae Dahuri Radix was administered orally for 7 days after 2VO. The histological analysis was performed at 7 days after surgery. For histological analysis, the brain tissue was stained with 1% cresyl violet solution. Results : 1. Angelicae Dahuri Radix has a protective effect against ischemia in the CA1 area of the gerbil hippocampus 7 days after 5-minute occlusion, 2. In the hypoxia/reperfusion model using PC12 cells, Angelicae Dahuri Radix has a protective effect against ischemia in the dose of $0.2\mu\textrm{g}/ml$, $2\mu\textrm{g}/ml$ and $20\mu\textrm{g}/ml$, 3. Angelicae Dahuri Radix increased the activities of glutathione peroxidase and catalase. 4. The activity of superoxide dismutase (SOD) was increased by ischemic damage, which might represent self protection. This study suggests that Angelicae Dahuri Radix has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils, and it also has protective effects on a hypoxia/reperfusion cell culture model using PC12 cells. Conclusions : Angelicae Dahuri Radix has protective effects against ischemic brain damage at the early stage of ischemia.

  • PDF

The Effect of Yukilsunki-tang extracts on Global Cerebral Ischemia in mice (육일순기탕(六一順氣湯) 추출물(抽出物)이 생쥐의 전뇌허혈(全腦虛血)에 미치는 영향(影響))

  • Jeong, Sung-Hyun;Shin, Gil-Cho;Lee, Won-Chul
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.7 no.2
    • /
    • pp.149-154
    • /
    • 1999
  • The effect of Yukilsunki-tang extracts on global cerebral ischemia were investigated in this study. The multiple parameters of global cerebral ischemia assessed in mice included the duration of KCN-induced(1.8mg/kg i.v.) coma, the survival time of KCN-induced(3.0mg/kg i.v.) coma, the survival time exposed to hypoxia induced by vacuum pump. In the case of global cerebral ischemia International Cancer Research mice were used and divided into two groups at random Group A, normal control, was treated after oral administration of normal saline. Group B, experimental control, was treated after oral administration of 13.2mg/20g of Yukilsunki-tang extracts. Each treatment was KCN-induced(1.8mg/kg i.v.) coma, KCN-induced(3.0mg/kg i.v.) coma and exposure to hypoxia induced by vacuum pump. The results were obtained as follows ; In global cerebral ischemia, Yukilsunki-tang extracts significantly prolonged the duration of KCN-induced(1.8mg/kg i.v.) coma, the survival time of KCN-induced(3.0mg/kg i.v.) coma and the survival time of exposure to hypoxia induced by vacuum pump in mice. Conclusion Yukisunki-tang extracts had a significant effect on Global cerebral ischemia.

  • PDF

Effect of Superoxide Dismutase on the Release of [$^3H$]-5-Hydroxytrytamine after Hypoxia from Rat Hippocampal Slices (흰쥐 해마 절편에서 저산소증에 의한 [$^3H$-5-Hydroxytrytamine의 유리 변동에 미치는 superoxide dismutase/catalase의 영향)

  • 이경은;박월미;배영숙
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.359-365
    • /
    • 1997
  • Many factors are known to be responsible for cerebral ischemic injury, such as excitatory neurotransmitters, increased intraneuronal calcium, or disturbance of cellular energy metabolism. Recently, oxygen free radicals, formed during ischemia/reperfusion, have been proposed as one of the main causes of ischemia/reperfusion injury. Therefore, to investigate the role of oxygen free radical during ischemia/reperfusion, in the present study the effect of endogenous oxygen free radical scavenger, superoxide dismutase / catalase(SOD / catalase) on the release of [$^3$H]-5-hydroxytryptamine([$^3$H]-5-HT) during hypoxia/reoxygenation in rat hippocampal slices was measured. The hippocampus was obtained from the rat brain and sliced 400 gm thickness with manual chopper. After 30 min's preincubation in the normal buffer, the slices were incubated for 20 min in a buffer containing [$^3$H]-5-HT(0.1 $\mu$M, 74 $\mu$Ci) for uptake, and washed. To measure the release of [$^3$H]-5-HT into the buffer, the incubation medium was drained off and refilled every ten minutes through a sequence of 14 tubes. Induction of hypoxia for 20 min (gassing it with 95% N$_2$/5% CO$_2$) was done in the 6th and 7th tube, and oxygen free radical scavenger, SOD / catalase was added 10 minutes prior to induction of hypoxia. The radioactivity in each buffer and the tissue were counted using liquid scintillation counter and the results were expressed as a percentage of the total activity. When slices were exposed to hypoxia for 20 min, [$^3$H]-5-HT release was markedly decreased and a rebound release of [$^3$H]-5-HT was observed on the post-hypoxic reoxygenation period. SOD / catalase did not changed the release of [$^3$H]-5-HT in control group, but inhibited the decrease of [$^3$H]-5-HT release in hypoxic period and rebound increase of [$^3$H]-5-HT in reoxygenation period. This result suggest that superoxide anion may play a role in the hypoxic-, and reoxygenation-induced change of [$^3$H]-5-HT release in rat hippocampal slices.

  • PDF

Upregulation of HIF-1α by Hypoxia Protect Neuroblastoma Cells from Apoptosis by Promoting Survivin Expression

  • Zhang, Bo;Yin, Cui-Ping;Zhao, Qian;Yue, Shou-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8251-8257
    • /
    • 2014
  • Apoptosis is one of main types of neural cell death and is reversible and is a major target of therapeutic interventions. However, detailed apoptotic cascades still need to be recognized. In present study, we determined the promotion of HIF-$1{\alpha}$ and survivin in brain samples of a mouse model of hypoxic-ischemia and in neuroblastoma SH-SY5Y cells post hypoxia treatment. Then gain-of-function and loss-of-function strategies were adopted to manipulate the HIF-$1{\alpha}$ in SH-SY5Y cells, and hypoxia-induced survivin upregulation and cell apoptosis were determined. Results demonstrated that the HIF-$1{\alpha}$ and survivin were significantly promoted in a mouse model of hypoxic-ischemia or in SH-SY5Y cells post hypoxia in vitro. Manually upregulated HIF-$1{\alpha}$ could promote the hypoxia-induced survivin upregulation and improve the hypoxia-induced SH-SY5Y cell apoptosis. On the other hand, the HIF-$1{\alpha}$ knockdown by RNAi reduced the hypoxia-induced survivin upregulation and cell apoptosis. Therefore, the present study confirmed the protective role of HIF-$1{\alpha}$ and survivin in the hypoxia-induced SH-SY5Y cell apoptosis, and the survivin upregulation by hypoxia is HIF-$1{\alpha}$-dependent. Promotion of HIF-$1{\alpha}$ and survivin might be a valuable stragegy for therapeutic intervention for hypoxic-ischemic encephalopathy.

Imaging Hypoxic Myocardium (심근 저산소증 영상)

  • Bae, Sang-Kyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.2
    • /
    • pp.141-145
    • /
    • 2005
  • Hypoxia (decreased tissue oxygen tension) is a component of many diseases such as tumors, cerebrovascular diseases and ischemic heart diseases. Although hypoxia can be secondary to a low inspired $pO_2$ or a variety of lung disorders, the most common cause is ischemia due to an oxygen demand greater than the local oxygen supply. In the heart tissue, hypoxia is often observed in persistent low-flow states, such as hibernating myocardium. Direct "hot spot" imaging of myocardial tissue hypoxia is potentially of great clinical importance because it may provide a means of identifying dysfunctional chronically ischemic but viable hibernating myocardium. A series of radiopharmaceuticals that incorporate nitroimidazole moieties have been synthesized to detect decreased local tissue pO2. In contrast to agents that localize in proportion to perfusion, these agents concentrate in hypoxic tissue. However, the ideal agents are not developed yet and the progress is very slow. Furthermore, the research focus is on tumor hypoxia nowadays. This review introduces the myocardial hypoxia imaging with summarizing the development of radiopharmaceuticals.