• Title/Summary/Keyword: Hypothesis-generating

Search Result 75, Processing Time 0.029 seconds

Improvement of Students' Problem Finding and Hypothesis Generating Abilities: Gifted Science Education Program Utilizing Mendel's Law (문제발견 및 가설설정 능력 신장 과학영재교육프로그램 개발: 멘델의 과학적 사고과정 적용)

  • Kim, Soon-Ok;Kim, Bong-Sun;Seo, Hae-Ae;Kim, Young-Min;Park, Jong-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.1033-1053
    • /
    • 2011
  • In the process of establishing the principle of genetics, Mendel discovered problems based on various observations. Mendel's scientific thinking ability can be effective if this ability is embedded in gifted science education programs. The study aims to develop a science gifted education program utilizing Mendel's scientific thinking ability shown in the principles of genetics and examine students' changes in scientific thinking ability before and after the program implementation. For the program development, first, the characteristics of Mendel's scientific thinking ability in the process of establishing the principle of genetics were investigated and extracted the major elements of inquiry. Second, the science gifted education programs was developed by applying the inquiry elements from the Mendel's Law. The program was implemented with 19 students of $7^{th}$, $8^{th}$ graders who attend the science gifted education center affiliated with university during July 2011. The Mendel's scientific thinking ability was classified into induction, deduction, and integration. The elements of inquiry extracted from the Mendel's scientific thinking include making observation, puzzling observation, proposing causal questions, generating hypothesis, drawing inference, designing experiment, gathering and analyzing data, drawing conclusions, and making generalization. With applying these elements, the program was developed with four phases: $1^{st}$ - problem finding; $2^{nd}$ - hypothesis generating; $3^{rs}$ - hypothesis testing and $4^{th}$ - problem solving. After implementation, students' changes in scientific thinking ability were measured. The findings from the study are as follows: First, students' abilities of problem finding is significantly (p<.05) increased. Second, students' abilities of hypothesis generating is significantly (pp<.05) increased.

Severe Tests and Mechanisms Generating an Evidence-Hypothesis (엄격한 시험과 증거-가설 생성의 메커니즘)

  • Chun, Young-Sam
    • Korean Journal of Logic
    • /
    • v.23 no.2
    • /
    • pp.71-115
    • /
    • 2020
  • It seems certain that even if the same evidence is in itself given for any hypotheses, the way how it is obtained makes some differences in its support degree of them. In this respect, it is worth paying our attention to Mayo's conception of "severe test" and her technical development of it, which are just concerned with the procedures of getting evidence. Nonetheless, there have been criticisms against her theory from various respects. Among them, here this paper focuses on those especially raised by Jung (2018) and Iseda (1999). And it attempts to defend Mayo's theory on behalf of her against their critiques. For this purpose, the paper also proposes particularly a new concept of what is called the "mechanism generating an evidence-hypothesis". On the way, Mayo's own faults are revealed as well.

Brain Activities by the Generating-Process-Types of Scientific Emotion in the Pre-Service Teachers' Hypothesis Generation About Biological Phenomena: An fMRI Study (예비교사들의 생물학 가설 생성에서 나타나는 과학적 감성의 생성 과정 유형별 두뇌 활성화에 대한 fMRI 연구)

  • Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.4
    • /
    • pp.568-580
    • /
    • 2006
  • The purpose of this study was to investigate the brain activities by 4-types of Generating Process of Scientific Emotion (GPSE) in the hypothesis-generating biological phenomena by using fMRI. Four-types of GPSE were involved in the Basic Generating Process (BGP), Retrospective Generating Process (RGP), Cognitive Generating Process (CGP) and Attributive Generating Process (AGP). For this study, we made an experimental design capable of validating the 4-types of generating process (e.g. BGP, RGP, CGP and AGP), and then measured BOLD signals of 10 pre-service teachers' brain activities by 3.0T fMRI system. Subjects were 10 healthy females majoring in biology education. As a result, there were clear differences among 4-types of GPSE. Brain areas activated by BGP were at right occipital lobe (BA 17), at left thalamus and left parahippocampal gyrus, while in the case of RGP, at left superior parietal lobe (BA 8, 9), at left pulvinar and left globus pallidus were activated. Brain areas activated by CGP were the right posterior cingulate and left medial frontal gyrus (BA 6). In the case of AGP, the most distinctively activated brain areas were the right medial frontal gyrus (BA 8) and left inferior parietal lobule (BA 40). These results would mean that each of the 4-types of GPSE has a specific neural networks in the brain, respectively. Furthermore, it would provide the basis of brain-based learning in science education.

Brain Activation in Generating Hypothesis about Biological Phenomena and the Processing of Mental Arithmetic: An fMRI Study (생명 현상에 대한 과학적 가설 생성과 수리 연산에서 나타나는 두뇌 활성: fMRI 연구)

  • Kwon, Yong-Ju;Shin, Dong-Hoon;Lee, Jun-Ki;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.1
    • /
    • pp.93-104
    • /
    • 2007
  • The purpose of this study is to investigate brain activity both during the processing of a scientific hypothesis about biological phenomena and mental arithmetic using 3.0T fMRI at the KAIST. For this study, 16 healthy male subjects participated voluntarily. Each subject's functional brain images by performing a scientific hypothesis task and a mental arithmetic task for 684 seconds were measured. After the fMRI measuring, verbal reports were collected to ensure the reliability of brain image data. This data, which were found to be adequate based on the results of analyzing verbal reports, were all included in the statistical analysis. When the data were statistically analyzed using SPM2 software, the scientific hypothesis generating process was found to have independent brain network different from the mental arithmetic process. In the scientific hypothesis process, we can infer that there is the process of encoding semantic derived from the fusiform gyrus through question-situation analysis in the pre-frontal lobe. In the mental arithmetic process, the area combining pre-frontal and parietal lobes plays an important role, and the parietal lobe is considered to be involved in skillfulness. In addition, the scientific hypothesis process was found to be accompanied by scientific emotion. These results enabled the examination of the scientific hypothesis process from the cognitive neuroscience perspective, and may be used as basic materials for developing a learning program for scientific hypothesis generation. In addition, this program can be proposed as a model of scientific brain-based learning.

Analysis of Students' Processes of Generating Scientific Explanatory Hypothesis - Focused on the Definition and the Characteristics of Scientific Hypothesis - (학생의 과학적 설명가설의 생성과정 분석 - 과학적 가설의 정의와 특성을 중심으로 -)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.4
    • /
    • pp.667-679
    • /
    • 2000
  • One of the major activities in scientific inquiry, as well as in the process of conceptual change, is the generation of scientific hypothesis. In this study, the definition and the characteristics of scientific hypothesis are analyzed. Especially, differences between explanatory hypothesis and scientific explanation, predictive hypothesis and scientific prediction, and scientific hypothesis and the inductive generalization are analyzed. And the process of making scientific hypothesis is suggested as 4 stages, and the role and the characteristic of the abductive thinking, which can be viewed as one of the scientific inferences needed to generate hypothesis, are discussed. In analysis, concrete examples from integrated science textbook of high school are used for application to the classroom teaching.

  • PDF

The Features of the Observation and the Hypothetical Faults Generated by Pre-service Elementary Teachers on Candlelight Inquiry Tasks - Focusing on Usage of the Participants' Prior Knowledge - (양초 연소 탐구 과제 상황에서 초등 예비교사가 생성한 관찰 및 가설의 오류 특성 - 학습자의 선행 지식의 활용을 중심으로 -)

  • Oh, Chang-Ho;Yang, Il-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.2
    • /
    • pp.93-104
    • /
    • 2009
  • The purpose of this study was to explore the relationship between pre-service elementary teacher's prior knowledge and processes of observations and hypotheses generation via analysis of descriptive fault patterns during observation, problem generation and hypotheses generation processes. For the purpose of this study, thirty-four undergraduate students were participated and descriptions of participants' responds were analyzed. As the result, four patterns of descriptive fault on the process of generating hypothesis were classified; 1) descriptive fault from the causalities, 2) descriptive fault from repetition of observational facts, 3) descriptive fault from the priority of prior knowledge, and 4) descriptive fault from negation of the observational facts. From the result, the researcher was able to explore the faults caused by pre-service elementary students' prior knowledge through the observational descriptive analysis with hypothetical descriptive analysis.

  • PDF

An Explorative Analysis of Hypothesis-Generation by Pre-service Science Teachers (예비 과학교사들의 가설 창안 과정에 대한 탐색적 분석)

  • Kwon, Yong-Ju;Yang, II-Ho;Chung, Won-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.1
    • /
    • pp.29-42
    • /
    • 2000
  • Hypothesis is defined as a single proposition proposed as a possible explanation for the occurrence of some observed phenomena. The purpose of this study was to analyze and categorize hypotheses generated by students on the cause of difference between the structures of muscles of the fishes and the terrestrial animals. A hypothesis-generating test was administered to 23 three college students who were majoring in science education. The study showed that college students generated manipulative and theoretical hypotheses as proposed explanations for the structural difference between muscles of the fishes and the terrestrial animals. Furthermore, students generated several hypotheses which were categorized by the quality of abductive process based on the degree of likeness between experienced knowledge and current phenomena. This study also discusses the implications of these findings for teaching and research in science education.

  • PDF

Development of the Quotient Equation of the Hypothesis Evaluating Ability by Analysis of the Pre-service Elementary School Teachers' Knowledges for Evaluating Hypothesis on a Woodpecker Task (딱따구리 과제에서 초등예비 교사들의 가설 평가 지식에 대한 분석을 통한 가설 평가 능력 지수 산출식의 개발)

  • Lee, Jun-Ki;Lee, Il-Sun;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.1
    • /
    • pp.49-59
    • /
    • 2008
  • The purpose of this study was to invent a quotient equation which could quantitatively evaluate individual's hypothesis evaluating ability. The equation was induced by the analysis of the classification types about hypothesis evaluation knowledges generated by 15 pre-service elementary school teachers and the construction of the quotient equation on hypothesis evaluating ability. The hypothesis evaluation task administered to subjects was dealt with the woodpecker behavior. The task was initiated by generating hypothesis on the following question: 'Why don't woodpecker have brain damage after pecking wood?' Subjects then were asked to design and perform experiments for testing hypothesis. Finally they were asked to evaluate their own hypothesis based on the collected, analyzed and interpreted data. The knowledges generated from their evaluating hypothesis were analyzed by 4 major categories (richness, type, level and accuracy). Then, a general equation which could quantitatively and systematically evaluate individual's hypothesis evaluating ability was invented by an inductive process. After combining all the categories the following quotient equation was proposed; '$VQ\;=\;{\sum}(TE_n\;{\times}\;AE_n)\;{\times}\;LE$'. According to this results, woodpecker task and hypothesis evaluating ability quotient equation (VQ) which invented in this study could be applied to a practical use of measuring students' ability of scientific hypothesis evaluation.

  • PDF

Three-dimensional object recognition using efficient indexing:Part II-generation and verification of object hypotheses (효율적인 인덱싱 기법을 이용한 3차원 물체인식:Part II-물체에 대한 가설의 생성과 검증)

  • 이준호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.10
    • /
    • pp.76-88
    • /
    • 1997
  • Based on the principles described in Part I, we have implemented a working prototype vision system using a feature structure called an LSG (local surface group) for generating object hypotheses. In order to verify an object hypothesis, we estimate the view of the hypothesized model object and render the model object for the computed view. The object hypothesis is then verified by finding additional features in the scene that match those present in the rendered image. Experimental results on synthetic and real range images show the effectiveness of the indexing scheme.

  • PDF

Development of Elementary Students' Ability to Generate Hypothesis Knowledge through Knowledge Generation Learning in Science (과학 지식 생성 학습을 통한 초등학생들의 가설 지식 생성 능력의 발달)

  • Kang, Eun-Mi;Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.3
    • /
    • pp.257-270
    • /
    • 2006
  • The purpose of this study was to develop elementary students' ability to generate hypothesis knowledge through knowledge generation learning in science. The learning program consisted of a series of 28 activities to generate hypotheses in science. Eighty 6th grade students participated in the study and were divided into experimental and control groups. The experimental group was administered a program geared towards hypothesis generation learning and the control group was administered a program aimed at hypothesis expository learning in elementary science. After using the respective programs, subjects in both groups were tested in terms of their abilities in abductive knowledge generation and administered a descriptive self-report regarding their generation of hypotheses. Two of the 28 activity program worksheets in the experimental group were analyzed in terms of the quality and process of students' hypothesis generation. The results were as follows: 1) The experimental group showed significantly higher scores in terms of scientific knowledge generation (i.e. abductive knowledge generation) than the control group. 2) The degree of hypothesis explanation in the experimental group was significantly higher than in the control group in terms of the quality of the generated hypotheses. In addition, students in the experimental group generated more varied and valid knowledge than the control group in terms of sub-knowledge of hypothesis generation. Therefore, it can be argued that this program for hypothesis knowledge generation in elementary science students was effective in the generation of hypothesis knowledge.

  • PDF