• Title/Summary/Keyword: Hyperspectral sensor

Search Result 76, Processing Time 0.02 seconds

Design and Construction of Spectral Library for the Korean Peninsular (한반도 지역의 지표특성을 고려한 분광라이브러리의 설계 및 구축)

  • Shin, Jung-Il;Kim, Sun-Hwa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.465-475
    • /
    • 2010
  • Spectral library is a database that archives spectral reflectance and related metadata of earth surface materials. Spectral library plays important role to assist analyzing several types of remote sensor data, to determine suitable wavelength band for detecting a certain material, and to classify hyperspectal image data. This paper describes the structure and content of a spectral library that is suitable for the environment of the Korea peninsula while existing spectral libraries have certain limitations to apply for surface materials covering the region. We designed a spectral library that includes vegetation and man-made materials indigenous to the region. The spectral library also includes spectra of mineral and rock, soil, liquid, and some man-made materials from existing spectral libraries. Newly augmented spectra of vegetation and man-made materials were obtained by spectral measurements in laboratory and field. The spectral library viewer was developed to increase efficiency of usage and searching.

Comparative Analysis of Italian Ryegrass Vegetation Indices across Different Sowing Seasons Using Unmanned Aerial Vehicles (무인기를 이용한 이탈리안 라이그라스의 파종계절별 식생지수 비교)

  • Yang Seung Hak;Jung Jeong Sung;Choi Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.103-108
    • /
    • 2023
  • Due to the recent impact of global warming, heavy rainfall and droughts have been occurring regardless of the season, affecting the growth of Italian ryegrass (IRG), a winter forage crop. Particularly, delayed sowing due to frequent heavy rainfall or autumn droughts leads to poor growth and reduced winter survival rates. Therefore, techniques to improve yield through additional sowing in spring have been implemented. In this study, the growth of IRG sown in Spring and Autumn was compared and analyzed using vegetation indices during the months of April and May. Spectral data was collected using an Unmanned Aerial Vehicle (UAV) equipped with a hyperspectral sensor, and the following vegetation indices were utilized: Normalized Difference Vegetation Index; NDVI, Normalized Difference Red Edge Index; NDRE (I), Chlorophyll Index, Red Green Ratio Index; RGRI, Enhanced Vegetation Index; EVI and Carotenoid Reflectance Index 1; CRI1. Indices related to chlorophyll concentration exhibited similar trends. RGRI of IRG sown in autumn increased during the experimental period, while IRG sown in spring showed a decreasing trend. The results of RGRI in IRG indicated differences in optical characteristics by sowing seasons compared to the other vegetation indices. Our findings showed that the timing of sowing influences the optical growth characteristics of crops by the results of various vegetation indices presented in this study. Further research, including the development of optimal vegetation indices related to IRG growth, is necessary in the future.

Application of Hyperspectral Imagery to Decision Tree Classifier for Assessment of Spring Potato (Solanum tuberosum) Damage by Salinity and Drought (초분광 영상을 이용한 의사결정 트리 기반 봄감자(Solanum tuberosum)의 염해 판별)

  • Kang, Kyeong-Suk;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Lee, Su Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.317-326
    • /
    • 2019
  • Salinity which is often detected on reclaimed land is a major detrimental factor to crop growth. It would be advantageous to develop an approach for assessment of salinity and drought damages using a non-destructive method in a large landfills area. The objective of this study was to examine applicability of the decision tree classifier using imagery for classifying for spring potatoes (Solanum tuberosum) damaged by salinity or drought at vegetation growth stages. We focused on comparing the accuracies of OA (Overall accuracy) and KC (Kappa coefficient) between the simple reflectance and the band ratios minimizing the effect on the light unevenness. Spectral merging based on the commercial band width with full width at half maximum (FWHM) such as 10 nm, 25 nm, and 50 nm was also considered to invent the multispectral image sensor. In the case of the classification based on original simple reflectance with 5 nm of FWHM, the selected bands ranged from 3-13 bands with the accuracy of less than 66.7% of OA and 40.8% of KC in all FWHMs. The maximum values of OA and KC values were 78.7% and 57.7%, respectively, with 10 nm of FWHM to classify salinity and drought damages of spring potato. When the classifier was built based on the band ratios, the accuracy was more than 95% of OA and KC regardless of growth stages and FWHMs. If the multispectral image sensor is made with the six bands (the ratios of three bands) with 10 nm of FWHM, it is possible to classify the damaged spring potato by salinity or drought using the reflectance of images with 91.3% of OA and 85.0% of KC.

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

Current Statues of Phenomics and its Application for Crop Improvement: Imaging Systems for High-throughput Screening (작물육종 효율 극대화를 위한 피노믹스(phenomics) 연구동향: 화상기술을 이용한 식물 표현형 분석을 중심으로)

  • Lee, Seong-Kon;Kwon, Tack-Ryoun;Suh, Eun-Jung;Bae, Shin-Chul
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.233-240
    • /
    • 2011
  • Food security has been a main global issue due to climate changes and growing world population expected to 9 billion by 2050. While biodiversity is becoming more highlight, breeders are confronting shortage of various genetic materials needed for new variety to tackle food shortage challenge. Though biotechnology is still under debate on potential risk to human and environment, it is considered as one of alternative tools to address food supply issue for its potential to create a number of variations in genetic resource. The new technology, phenomics, is developing to improve efficiency of crop improvement. Phenomics is concerned with the measurement of phenomes which are the physical, morphological, physiological and/or biochemical traits of organisms as they change in response to genetic mutation and environmental influences. It can be served to provide better understanding of phenotypes at whole plant. For last decades, high-throughput screening (HTS) systems have been developed to measure phenomes, rapidly and quantitatively. Imaging technology such as thermal and chlorophyll fluorescence imaging systems is an area of HTS which has been used in agriculture. In this article, we review the current statues of high-throughput screening system in phenomics and its application for crop improvement.