DOI QR코드

DOI QR Code

Design and Construction of Spectral Library for the Korean Peninsular

한반도 지역의 지표특성을 고려한 분광라이브러리의 설계 및 구축

  • Shin, Jung-Il (Department of Geoinformatic Engineering, Inha University) ;
  • Kim, Sun-Hwa (Department of Geoinformatic Engineering, Inha University) ;
  • Lee, Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
  • 신정일 (인하대학교 지리정보공학과) ;
  • 김선화 (인하대학교 지리정보공학과) ;
  • 이규성 (인하대학교 지리정보공학과)
  • Received : 2010.02.25
  • Accepted : 2010.09.01
  • Published : 2010.10.31

Abstract

Spectral library is a database that archives spectral reflectance and related metadata of earth surface materials. Spectral library plays important role to assist analyzing several types of remote sensor data, to determine suitable wavelength band for detecting a certain material, and to classify hyperspectal image data. This paper describes the structure and content of a spectral library that is suitable for the environment of the Korea peninsula while existing spectral libraries have certain limitations to apply for surface materials covering the region. We designed a spectral library that includes vegetation and man-made materials indigenous to the region. The spectral library also includes spectra of mineral and rock, soil, liquid, and some man-made materials from existing spectral libraries. Newly augmented spectra of vegetation and man-made materials were obtained by spectral measurements in laboratory and field. The spectral library viewer was developed to increase efficiency of usage and searching.

분광라이브러리는 지구에 존재하는 다양한 물질의 분광반사 자료와 그에 대한 보조자료를 축적한 데이터베이스로 정의할 수 있다. 분광라이브러리는 다양한 분야에서 물질의 종류와 특성을 분석하기 위한 참조자료로 사용되고 있으며 원격탐사 분야에서는 광학영상 자료와 연계하여 토지 피복의 종류와 속성을 분류하고 더 나아가 초분광영상의 해석에 중요한 자료로 사용되고 있다. 현존 분광라이브러리는 측정항목이나 측정방법, 보조자료 등이 표준화되어 있지 않으며, 특히 국내에 직접 적용하기에는 지표물의 종류가 한정되어 있다. 이 논문은 국내 환경에 직접 적용할 수 있는 분광라이브러리를 설계하고 구축하는 과정을 인공물에 대한 분광반사측정을 실시하였고 동시에 설계된 보조자료의 항목에 대한 측정 및 조사를 실시하였다. 또한 외국에서 개발된 분광라이브러리에서 보조자료가 충실한 광물 및 암석, 토양, 물 등의 분광반사자료를 함께 포함하고 있다. 구축된 분광라이브러리의 활용성 증대와 검색의 용이성을 위해 분광라이브러리 뷰어를 개발하였다.

Keywords

References

  1. 김주원, 2002. 간추린 아스팔트 혼합물의 역사. 토지개발기술, 15(1): 7-24.
  2. 농림부, 2006. 농림통계연보.
  3. 산림청, 2009. 임업통계연보. 제 39호.
  4. 이규성, 윤여상, 김선화, 신정일, 윤정숙, 강성진, 2009. 한반도 토지이용 및 토지피복 모니터링을 위한 현안 분석. 대한원격탐사학회지, 25(1): 71-83. https://doi.org/10.7780/kjrs.2009.25.1.71
  5. 임업연구원, 1996. 활엽수자원조사보고서: 전국총괄. 임업연구원 연구자료, 제122호.
  6. 지광훈, 이성순, 이홍진, 2007. 지표피복물 분광정보 라이브러리 - 암석.식생.인공구조물. 한국지질자원연구원 공공원격탐사 지상센터.
  7. 통계청, 2007. 한국통계연감. 제54호.
  8. Baldridge, A. M., S. J. Hook, C. I. Grove, and G. Rivera, 2009. The ASTER spectral library version 2.0. Remote Sensing of Environment, 113(4): 711-715. https://doi.org/10.1016/j.rse.2008.11.007
  9. Clark, R. N., G. A. Swayze, A. J. Gallagher, T. V. V. King, and W. M. Calvin, 1993. The U. S. Geological Survey, Digital spectral library: version 1 (0.2 to 3.0mm). U.S. Geological Survey, Open file report, 93-592, http://speclab.cr.usgs.gov/spectral.lib04/clark1993/spectral_lib.html.
  10. DiGregorio, B. E., 2003. The planetary shared sample library - A new tool for planetary science. Spectroscopy, 18(3): 32.
  11. Drake, N. A., S. Mackin, and J. J. Settle, 1999. Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery. Remote Sensing of Environment, 68(1): 12-25. https://doi.org/10.1016/S0034-4257(98)00097-2
  12. Franke, J., D. A. Roberts, K. Halligan, and G. Menz, 2009. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sensing of Environment, 113(8): 1712-1723. https://doi.org/10.1016/j.rse.2009.03.018
  13. Grebenyuk, N. N. and Blank, A. B., 2001. Method of eliminating systematic errors of atomic absorption analysis in atomization of a material in a graphite furnace. Journal of Applied Spectroscopy, 68(5): 859-861. https://doi.org/10.1023/A:1013206319780
  14. Heiden, U., K. Segl, S. Roessner, and H. Kaufmann, 2007. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sensing of Environment, 111(4): 537-552. https://doi.org/10.1016/j.rse.2007.04.008
  15. Howari, F. M., 2003. Comparison of spectral matching algorithms for identifying natural salt crusts. Journal of Applied Spectroscopy, 70(5): 782-787. https://doi.org/10.1023/B:JAPS.0000008878.45600.9c
  16. Kokaly, R. F., D. G. Despain, R. N. Clark, and K. E. Livo, 2003. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sensing of Environment, 84(3): 437-456. https://doi.org/10.1016/S0034-4257(02)00133-5
  17. Kruse, F. A., A. B. Lefkoff, J. W. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, and A. F. H. Goetz, 1993. The spectral image processing system (SIPS) - Interactive visualization and analysis of imaging spectrmeter data. Remote Sensing of Environment, 44(2-3): 145-163. https://doi.org/10.1016/0034-4257(93)90013-N
  18. Lillesand, T. M. and Kiefer, R. W., 1994. Remote sensing and image interpretation, Third edition. John Wiley & Sons, New York, pp. 12-17.
  19. Lowry, S., Wieboldt, D., Dalrymple, D., Jasinevicius, R., and Downs R. T., 2009. The use of a Raman spectral database of minerals for the rapid verification of semiprecious gemstones. Spectroscopy, 24(5): 52-60.
  20. Meston, S. K. T., 2004. Far-infrared spectroscopy helps defend against threat of terrorism. Spectroscopy, 19(1): 66.
  21. Milton, E. J., M. E. Schaepman, K. Anderson, M. Kneubuhler, and N. Fox, 2009. Progress in field spectroscopy. Remote Sensing of Environment, 113(S1): S92-S109. https://doi.org/10.1016/j.rse.2007.08.001
  22. Powell, R. L., D. A. Roberts, P. E. Dennison, and L. L. Hess, 2007. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sensing of Environment, 106(2): 256-267.
  23. Rivard, B., J. Feng, A. Gallie, and A. Sanchez- Azofeifa, 2008. Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sensing of Environment, 112(6): 2850-2862. https://doi.org/10.1016/j.rse.2008.01.016
  24. Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., and Martonchik, J. V., 2006. Reflectance quantities in optical remote sensing - definitions and case studies. Remote Sensing of Environment, 103(1): 27-42. https://doi.org/10.1016/j.rse.2006.03.002
  25. Shepherd, K. D. and M. G. Walsh, 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal, 66: 988-998. https://doi.org/10.2136/sssaj2002.0988
  26. Swain, P. H. and S. M. Davis, 1978. Remote Sensing: The Quantitative Approach, McGraw-Hill Inc., U.S.A.
  27. Van Der Meer, F. D. and S. M. De Jong, 2003. Imaging spectrometry - Basic principles and prospective application. Kluwer academic publishers, Dordrecht, The Neherlands.
  28. ASU spectral library, http://speclib.asu.edu/
  29. ICRAF spectral library, http://gcmd.nasa.gov/KeywordSearch/Metadata.do? Portal=GCMD&KeywordPath=&NumericId=15023&MetadataView=Brief&Metad ataType=0&lbnode=mdlb2
  30. Johns Hopkins university spectral library, http://speclib.jpl.nasa.gov/documents/jhu_desc