• 제목/요약/키워드: Hyperspectral Data

검색결과 201건 처리시간 0.019초

중력모델에 기반한 하이퍼스텍트럴 영상 분류 (Classification of Hyperspectral Images based on Gravity type Model)

  • 변영기;이정호;김용민;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.183-186
    • /
    • 2007
  • Hyperspectral remote sensing data contain plenty of information about objects, which makes object classification more precise. Over the past several years, different algorithms for the classification of hyperspectral remote sensing images have been developed. In this study, we proposed method based on absorption band extraction and Gravity type model to solve hyperspectral image classification problem. In contrast to conventional methods that are based on correlation techniques, this method is simple and more effective. The proposed approach was tested to evaluate its effectiveness. The evaluation was done by comparing the results of preexiting SFF(Spectral Feature Fitting) classification method. The evaluation results showed the proposed approach has a good potential in the classification of hyperspectral images.

  • PDF

Hyperspectral Fluorescence Imaging for Mouse Skin Tumor Detection

  • Kong, Seong G.;Martin, Matthew E.;Vo-Dinh, Tuan
    • ETRI Journal
    • /
    • 제28권6호
    • /
    • pp.770-776
    • /
    • 2006
  • This paper presents a hyperspectral imaging technique based on laser-induced fluorescence for non-invasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect image data in a number of narrow, adjacent spectral bands. Such high-resolution measurement of spectral information reveals contiguous emission spectra at each image pixel useful for the characterization of constituent materials. The hyperspectral image data used in this study are fluorescence images of mouse skin consisting of 21 spectral bands in the visible spectrum of the wavelengths ranging from 440 nm to 640 nm. Fluorescence signal is measured with the use of laser excitation at 337 nm. An acousto-optic tunable filter (AOTF) is used to capture images at 10 nm intervals. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the spatial offsets caused by the refraction differences in AOTF at different wavelengths during the image capture procedure. The unique fluorescence spectral signatures demonstrate a good separation to differentiate malignant tumors from normal tissues for rapid detection of skin cancers without biopsy.

  • PDF

Decomposition of Interference Hyperspectral Images Based on Split Bregman Iteration

  • Wen, Jia;Geng, Lei;Wang, Cailing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3338-3355
    • /
    • 2018
  • Images acquired by Large Aperture Static Imaging Spectrometer (LASIS) exhibit obvious interference stripes, which are vertical and stationary due to the special imaging principle of interference hyperspectral image (IHI) data. As the special characteristics above will seriously affect the intrinsic structure and sparsity of IHI, decomposition of IHI has drawn considerable attentions of many scientists and lots of efforts have been made. Although some decomposition methods for interference hyperspectral data have been proposed to solve the above problem of interference stripes, too many times of iteration are necessary to get an optimal solution, which will severely affect the efficiency of application. A novel algorithm for decomposition of interference hyperspectral images based on split Bregman iteration is proposed in this paper, compared with other decomposition methods, numerical experiments have proved that the proposed method will be much more efficient and can reduce the times of iteration significantly.

Analysis and Comparison of Rock Spectroscopic Information Using Drone-Based Hyperspectral Sensor

  • Lee, So-Jin;Jeong, Gyo-Cheol;Kim, Jong-Tae
    • 지질공학
    • /
    • 제31권4호
    • /
    • pp.479-492
    • /
    • 2021
  • We conducted a fundamental study on geological and rock detection via drone-based hyperspectral imaging on various types of small rock samples and interpreted the obtained information to compare and classify rocks. Further, we performed hyperspectral imaging on ten rocks, and compared the peak data value and reflectance of rocks. Results showed a difference in the reflectance and data value of the rocks, indicating that the rock colors and minerals vary or the reflectance is different owing to the luster of the surface. Among the rocks, limestone used for hyperspectral imaging is grayish white, inverted rock contains various sizes and colors in the dark red matrix, and granite comprises colorless minerals, such as white, black, gray, and colored minerals, resulting in a difference in reflectance. The reflectance of the visible ray range in ten rocks was 16.00~85.78%, in the near infrared ray range, the average reflectance was 23.94~86.43%, the lowest in basalt and highest in marble in both cases. This is because of the pores in basalt, which caused the difference in reflectance.

Non-destructive quality prediction of domestic, commercial red pepper powder using hyperspectral imaging

  • Sang Seop Kim;Ji-Young Choi;Jeong Ho Lim;Jeong-Seok Cho
    • 한국식품저장유통학회지
    • /
    • 제30권2호
    • /
    • pp.224-234
    • /
    • 2023
  • We analyzed the major quality characteristics of red pepper powders from various regions and predicted these characteristics nondestructively using shortwave infrared hyperspectral imaging (HSI) technology. We conducted partial least squares regression analysis on 70% (n=71) of the acquired hyperspectral data of the red pepper powders to examine the major quality characteristics. Rc2 values of ≥0.8 were obtained for the ASTA color value (0.9263) and capsaicinoid content (0.8310). The developed quality prediction model was validated using the remaining 30% (n=35) of the hyperspectral data; the highest accuracy was achieved for the ASTA color value (Rp2=0.8488), and similar validity levels were achieved for the capsaicinoid and moisture contents. To increase the accuracy of the quality prediction model, we conducted spectrum preprocessing using SNV, MSC, SG-1, and SG-2, and the model's accuracy was verified. The results indicated that the accuracy of the model was most significantly improved by the MSC method, and the prediction accuracy for the ASTA color value was the highest for all the spectrum preprocessing methods. Our findings suggest that the quality characteristics of red pepper powders, even powders that do not conform to specific variables such as particle size and moisture content, can be predicted via HSI.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권3호
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

Mapping Within-field Variability Using Airborne Imaging Systems: A Case Study from Missouri Precision Agriculture

  • Hong, S.Y.;Sudduth, K.A.;Kitchen, N.R.;Palm, H.L.;Wiebold, W.J.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1049-1051
    • /
    • 2003
  • This study investigated the use of airborne image data to provide estimates of within -field variability in soil properties and crop growth as an alternative to extensive field data collection. Hyperspectral and multispectral images were acquired in 2000, 2001, and 2002 for central Missouri experimental fields. Data were converted to reflectance using chemically-treated reference tarps with known reflectance levels. Geometric distortion of the hyperspectral pushbroom sensor images was corrected with a rubber sheeting transformation. Statistical analyses were used to relate image data to field-measured soil properties and crop characteristics. Results showed that this approach has potential; however, it is important to address a number of implementation issues to insure quality data and accurate interpretations.

  • PDF

초분광 영상의 최대 강도값과 하천 수심의 상관성 분석 (Correlation Analysis on the Water Depth and Peak Data Value of Hyperspectral Imagery)

  • 강준구;이창훈;여홍구;김종태
    • Ecology and Resilient Infrastructure
    • /
    • 제6권3호
    • /
    • pp.171-177
    • /
    • 2019
  • 초분광 영상은 기존 다중분광 영상에 비해 보다 세밀한 분석이 가능하며 감지가 어려운 지표 성질의 분석에 유용하게 활용될 수 있다. 따라서 본 연구에서는 수심에 대한 실측데이터와 드론 기반의 영상을 이용하여 하천환경 정보를 획득하는 것이 목적으로써 이를 위해 드론 기반의 초분광 센서를 활용하여 1개 측선 100개 지점에 대한 영상값을 취득하였으며 ADCP를 통해 확보된 실제 수심정보와 비교하여 상관관계를 분석하였다. ADCP 측정결과 중앙으로 갈수록 수심이 깊어지는 경향을 보이고 있으며 수심은 평균 0.81 m로 나타났다. 초분광 영상 분석 결과 최대 강도가 가장 높은 지점은 645, 가장 낮은 지점은 278이며 실제 수심과 초분광 영상분석결과의 상관성을 분석한 결과 최대 강도값이 감소할수록 수심은 증가하는 것으로 나타났다.

초분광 영상자료의 Endmember 추출 속도 향상에 관한 연구 (A Study on Fast Extraction of Endmembers from Hyperspectral Image Data)

  • 김광은
    • 대한원격탐사학회지
    • /
    • 제28권4호
    • /
    • pp.347-355
    • /
    • 2012
  • 본 연구에서는 MNF 변환 후 각 밴드별 최소, 최대값을 가지는 화소들을 추출하고, 이 후보 화소들만을 대상으로 endmemeber를 추출하는 기법을 제안하고 이의 적용 가능성을 고찰하였다. 이와 같은 접근은 영상자료의 크기와 관계없이 밴드수${\times}$2개에 해당하는 화소들만을 대상으로 endmember를 추출하므로 전체 화소를 대상으로 endmember 여부를 계산하는 기존의 기법들보다 계산시간 측면에서 매우 효율적일 수 있다. 모의 초분광 영상자료 및 미국 네바다 Cuprite 지역의 AVIRIS 초분광 영상자료에 N-FINDR 기법을 적용하여 endmember를 추출함에 있어 본 기법을 적용해본 결과, 전체 화소를 대상으로 처리한 결과와 거의 동일한 결과를 얻을 수 있음을 확인하였다. 잡음에 의한 영항과 후보 화소 추출기준 등에 대한 추가 연구를 통해 대용량 초분광 영상자료의 처리 및 분석에 효율적으로 활용될 수 있을 것으로 기대된다.

Spectal Characteristics of Dry-Vegetation Cover Types Observed by Hyperspectral Data

  • Lee Kyu-Sung;Kim Sun-Hwa;Ma Jeong-Rim;Kook Min-Jung;Shin Jung-Il;Eo Yang-Dam;Lee Yong-Woong
    • 대한원격탐사학회지
    • /
    • 제22권3호
    • /
    • pp.175-182
    • /
    • 2006
  • Because of the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions of agricultural croplands, grasslands, and disturbed forests by multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been a primary problem to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement (GER-2600) and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Red-edge near 700nm and shortwave IR near 2,200nm are more sensitive to the fraction of dry vegetation. The use of hyperspectral data would allow us for better separation between bare soils and other surfaces covered by dry vegetation during the leaf-off season.