• Title/Summary/Keyword: Hyperpolarized

Search Result 50, Processing Time 0.021 seconds

Effects of Prostaglandin $F_{2{\alpha}}$ on Membrane Potentials and $K^+$ Currents in Rabbit Middle Cerebral Arterial Cells

  • Kim, Na-Ri;Han, Jin;Kim, Won-Gue;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.301-309
    • /
    • 2000
  • The purpose of our investigation was to examine the effects of prostaglandin $F_{2{\alpha}}\;(PGF_{2{\alpha}})$ on membrane potentials, $Ca^{2+}-activated\;K^+\;(K_{Ca})$ channels, and delayed rectifier $K^+(K_V)$ channels using the patch-clamp technique in single rabbit middle cerebral arterial smooth muscle cells. $PGF_{2{\alpha}}$ significantly hyperpolarized membrane potentials and increased outward whole-cell K currents. $PGF_{2{\alpha}}$ increased open-state probability of $K_{Ca}$ channels without the change of the open and closed kinetics. $PGF_{2{\alpha}}$ increased the amplitudes of $K_V$ currents with a leftward shift of activation and inactivation curves and a decrease of activation time constant. Our results suggest that the activation of $K_{Ca}$ and $K_V$ channels, at least in part, may lead to attenuate or counteract vasoconstriction by $PGF_{2{\alpha}}$ in middle cerebral artery.

  • PDF

Imaging Cancer Metabolism

  • Momcilovic, Milica;Shackelford, David B.
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.81-92
    • /
    • 2018
  • It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.

A State-of-the Art MRI of the Lungs Using Hyperpolarized Gas

  • 이동훈
    • Proceedings of the KSMRM Conference
    • /
    • 1999.11a
    • /
    • pp.19-25
    • /
    • 1999
  • 허파에 대한 수소 자기공명영상은 현재까지 거의 불가능한 것으로 알려져 있다. 허파의 조직과 비어있는 공간 사이의 심한 자화율(susceptibility) 차이로 인해서 영상왜곡 현상이 유발되어 그릇된 영상정보를 만들기 때문이다. 본 강좌에서는 이러한 문제를 해결할 수 있는 레이저 광펌핑 방법으로 초편극화된 비활성기체를 이용한 자기공명연구를 소개한다. 일반적인 자기공명 신호와 쳐편극화된 비활성기체를 이용한 자기공명 연구를 소개한다. 일반적인 자기공명 신호와 초편극화 기체를 이용한 신호의 차이와 물리적인 원리를 고찰할 것이다 . 비활성기체가 초편극화 되었을 때, 일반적인 자기공명의 경우에 (자기장: 1 Tesla, 온도는 $30^{\circ}C$의 열평형상태) 비해서 약 $10^{5}$ 정도의 magnetizaion 향상을 기대할 수 있으며, 기체상태라는 점이 감안된다 해도 의미 있는 자기공명신호를 획득할 수 있다. 비활성기체를 초편exchange 방법을 통하여 간접적으로 가스를 편극화 시키는 두 가지 방법이 있다. 이들의 기본적인 원리와 두 방법의 장단점 등을 알아 볼 것이다. 더불어, 초편극화 정도가 외부자기장의 세기 차이에 의한 영향을 받지 않는 다는 특성을 이용하는 경우, 비용을 최소화 하면서 고해상도의 영상을 얻을 수 있으며, 이동성이 용이한 낮은 자기고명진단기가 가능한데 이에 대한 소개를 할 것이다. 그리고, 초편극화가스를 이용한 자기공명영상 연구의 현재 동향 및 미래에 대해서 논의한다.

  • PDF

The Inhibitory Effect of Opioid on the Hyperpolarization-Activated Cation Currents in Rat Substantia Gelatinosa Neurons

  • Seol, Geun-Hee;Kim, Jun;Cho, Sun-Hee;Kim, Won-Ki;Kim, Jong-Whan;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.373-380
    • /
    • 2001
  • The action of opioid on the hyperpolarization-activated cation current $(I_h)$ in substantia gelatinosa neurons were investigated by using whole-cell voltage-clamp recording in rat spinal brain slices. Hyperpolarizing voltage steps revealed slowly activating currents in a subgroup of neurons. The half-maximal activation and the reversal potential of the current were compatible to neuronal $I_h.$ DAMGO $(1\;{\mu}M),$ a selective- opioid agonist, reduced the amplitude of $I_h$ reversibly. This reduction was dose-dependent and was blocked by CTOP $(2\;{\mu}M),$ a selective ${\mu}-opioid$ antagonist. DAMGO shifted the voltage dependence of activation to more hyperpolarized potential. Cesium (1 mM) or ZD 7288 $(100\;{\mu}M)$ blocked $I_h$ and the currents inhibited by cesium, ZD 7288 and DAMGO shared a similar time and voltage dependence. These results suggest that activation of ${\mu}-opioid$ receptor by DAMGO can inhibit $I_h$ in a subgroup of rat substantia gelatinosa neurons.

  • PDF

Effects of Vanadate on the intracellular Calcium ion activities in mvocardial cells (심근세포내 칼슘 이온 활용도에 미치는 Vanadate 의 효과)

  • Lee, Jeong-Ryeol;Kim, U-Gyeom
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.291-298
    • /
    • 1988
  • The effect of Vanadate on the isometric contraction, membrane potential and intracellular calcium ion activities of rabbit myocardial cells were investigated, using calcium selective microelectrode, filled with neutral calcium ion carrier, ETH-1001. The resting tension, the membrane potential and the intracellular calcium ion activities were recorded in normal Tyrode solution and compared with those in the contracture induced by 10 mM Vanadate. The following results were obtained: 1. The dose-response relationship between the contraction of Vanadate and twitch tension showed near-maximum response in 5mM with no corresponding changes in action potential. 2. The resting tension increased up to the amplitude of a control twitch in 10mM Vanadate with resting membrane potential, hyperpolarized. 3. Increase in intracellular calcium ion activities proceeded the contracture by 10mM Vanadate which were restored to the control level in accordance with a decrease of intracellular calcium ion activities. 4. The amplitude of contractures by 10mM Vanadate were 90-120% of the control twitch tension in which the intracellular calcium ion activities were increased about 70 times from p Ca, 7.1 in the control to p Ca, 5.8 in contractures.

  • PDF

Ionic Basis of Resting Membrane Potential in the Coronary Sinus Cells of the Rabbit (토끼 Coronary Sinus에서의 안정막 전압에 관한 연구)

  • Chang, Jin-Keun;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.20 no.2
    • /
    • pp.184-191
    • /
    • 1986
  • Membrane potential of cells in the isolated rabbit coronary sinus was measured by conventional glass microelectrode and investigated the effect of $[K^+]_0$ variation in control, 20 mM and Ach-containing Tyrode solution. The results obtained were as follows: 1) The resting membrane potential exposed to normal Tyrode solution containing 3 mM $K^+\;was\;about\;-60{\sim}\;-65mV$. At extracellular $K^+$ concentrations from 1 to 30 mM the resting Potential was reasonably well described by Goldman -Hodgkin -Katz equation on the assumption that $[K^+]_1$ was 150 mM and that the ratio of membrane permeability coefficient for $Na^+\;and\;K^+,\;P_{Na}/P_K\;({\alpha})$ was 0.07. 2) In 20 mM Na-Tyrode solution (replacing by equimolar Tris) the resting membrane potential was hyperpolarized by 15 to 20 mV and showed slightly deviated to depolarized direction compared to the predicted value by Goldman-Hodgkin -Katz equation. 3) In the presence of $10^{-6}M$ Ach, the resting potentials at $[K^+]_0$ levels from 1 to 30 mM were well fitted with the predicted value on the assumption that $P_{Na}/P_K$ was 0.0144. It could be concluded that the low resting membrane potential of coronary sinus cells reflects a relatively high ratio $P_{Na}/P_K$ of about 0.07.

  • PDF

Calcitonin Gene-related Peptide Suppresses Pacemaker Currents by Nitric Oxide/cGMP-dependent Activation of ATP-sensitive K+ Channels in Cultured Interstitial Cells of Cajal from the Mouse Small Intestine

  • Choi, Seok;Parajuli, Shankar Prasad;Yeum, Cheol Ho;Park, Chan Guk;Kim, Man Yoo;Kim, Young Dae;Cha, Kyoung Hun;Park, Young Bong;Park, Jong Seong;Jeong, Han Seong;Jun, Jae Yeoul
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.181-185
    • /
    • 2008
  • The effects of calcitonin gene-related peptide (CGRP) on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine were investigated using the whole-cell patch clamp technique at $30^{\circ}C$. Under voltage clamping at a holding potential of -70 mV, CGRP decreased the amplitude and frequency of pacemaker currents and activated outward resting currents. These effects were blocked by intracellular $GDP{\beta}S$, a G-protein inhibitor and glibenclamide, a specific ATP-sensitive $K^+$ channels blocker. During current clamping, CGRP hyperpolarized the membrane and this effect was antagonized by glibenclamide. Pretreatment with SQ-22536 (an adenylate cyclase inhibitor) or naproxen (a cyclooxygenase inhibitor) did not block the CGRP-induced effects, whereas pretreatment with ODQ (a guanylate cyclase inhibitor) or L-NAME (an inhibitor of nitric oxide synthase) did. In conclusion, CGRP inhibits pacemaker currents in ICC by generating nitric oxide via G-protein activation and so activating ATP-sensitive $K^+$ channels. Nitric oxide- and guanylate cyclase-dependent pathways are involved in these effects.

Effects of Somatostatin on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in the Adult Mice

  • Park, Seon-Ah;Yin, Hua;Bhattarai, Janardhan P.;Park, Soo-Joung;Han, Seong-Kyu
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.191-197
    • /
    • 2009
  • Somatostatin (SST) is a known neuromodulator of the central nervous system. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives many thinmyelinated $A{\delta}$-fiber and unmyelinated C primary afferent fibers and is involved in nociceptive processing. Many studies have demonstrated that SST plays a pivotal role in pain modulation in the spinal cord. However, little is yet known about the direct effects of SST on the SG neurons of the Vc in adult mice. In our present study, we investigated the direct membrane effects of SST and a type 2 SST receptor agonist, seglitide (SEG), on the SG neurons of the Vc using a gramicidin-perforated current clamp in adult mice. The majority (53%, n = 27/51) of the adult SG neurons were hyperpolarized by SST (300 nM) but no differences were found in the hyperpolarization response rate between males and females. When SST was applied successively, the second response was smaller ($76{\pm}9.5%$, n=19), suggesting that SST receptors are desensitized by repeated application. SST-induced hyperpolarization was also maintained under conditions where presynaptic events were blocked ($75{\pm}1.0%$, n=5), suggesting that this neuromodulator exerts direct effects upon postsynaptic SG neurons. SEG was further found to induce membrane hyperpolarization of the SG neurons of the Vc. These results collectively demonstrate that SST inhibits the SG neuronal activities of the Vc in adult mice with no gender bias, and that these effects are mediated via a type 2 SST receptor, suggesting that this is a potential target for orofacial pain modulation.

Two Types of Voltage-dependent Outward Potassium Currents in Smooth Muscle Cells of Rabbit Basilar Atery

  • Kang, Tong-Mook;So, In-Suk;Uhm, Dae-Yong;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.169-183
    • /
    • 1997
  • We have investigated the two types of voltage-dependent outward potassium (K) currents, i.e. delayed rectifier K current ($I_{K(V)}$) and 'A-like' transient outward K current ($I_{to}$) with patch-clamp technique in single smooth muscle cells (SMCs) isolated from rabbit basilar artery, and investigated the characteristics of them. The time-courses of activation were well fitted by exponential function raised to second power ($n^2$) in $I_{K(V)}$ and fourth power ($n^4$) in $I_{to}$. The activation, inactivation and recovery time courses of $I_{to}$ were much faster than that of $I_{K(V)}$. The steady-state activation and inactivation of $I_{K(V)}$ was at the more hyperpolarized range than that of $I_{to}$ contrary to the reports in other vascular SMCs. Tetraethylammonium chloride (TEA; 10 mM) markedly inhibited $I_{K(V)}$ but little affected $I_{to}$. 4-Aminopyridine (4-AP) had similar inhibitory potency on both currents. While a low concentration of $Cd^{2+}$ (0.5 mM) shifted the current- voltage relationship of $I_{to}$ to the positive direction without change of maximum conductance, $Cd^{2+}$ did not cause any appreciable change for $I_{K(V)}$.

  • PDF

Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells

  • Joo, Young Shin;Lee, Hong Joon;Choi, Jin-Sung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.75-82
    • /
    • 2017
  • The effects of acepromazine on human ether-$\grave{a}$-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an $IC_{50}$ value of $1.5{\mu}M$ and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between -40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.