DOI QR코드

DOI QR Code

Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells

  • Joo, Young Shin (Department of Pharmacology, College of Medicine, The Catholic University of Korea) ;
  • Lee, Hong Joon (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Choi, Jin-Sung (College of Pharmacy, Integrated Research Institute of Pharmaceutical, The Catholic University of Korea) ;
  • Sung, Ki-Wug (Department of Pharmacology, College of Medicine, The Catholic University of Korea)
  • Received : 2016.08.18
  • Accepted : 2016.09.09
  • Published : 2017.01.01

Abstract

The effects of acepromazine on human ether-$\grave{a}$-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an $IC_{50}$ value of $1.5{\mu}M$ and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between -40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.

Keywords

References

  1. Collard JF, Maggs R. Clinical trial of acepromazine maleate in chronic schizophrenia. Br Med J. 1958;1:1452-1454. https://doi.org/10.1136/bmj.1.5085.1452
  2. O'reilly PO, Michaud M, Wojcicki HM, Keogh RP. Acetylpromazine (acepromazine) in the treatment of chronic mental illness. Can Med Assoc J. 1958;79:381-383.
  3. Simpson RW. The effects of notensil in chronic mental illness. J Ment Sci. 1958;104:179-181. https://doi.org/10.1192/bjp.104.434.179
  4. Urquhart R, Forrest AD. Clinical trial of promazine hydrochloride and acetylpromazine in chronic schizophrenic patients. J Ment Sci. 1959;105:260-264. https://doi.org/10.1192/bjp.105.438.260
  5. Rankin DC. Sedatives and tranquilizers. In: Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson SA, editors. Veterinary anesthesia and analgesia. 5th ed. Oxford: John Wiley & Sons; 2015. p.196-206.
  6. Lopez-Sanroman FJ, Gomez Cisneros D, Varela del Arco M, Santiago Llorente I, Santos Gonzalez M. The use of low doses of acepromazine as an aid for lameness diagnosis in horses: An accelerometric evaluation. Vet Comp Orthop Traumatol. 2015;28: 312-317. https://doi.org/10.3415/VCOT-14-11-0177
  7. Monteiro ER, Coelho K, Bressan TF, Simoes CR, Monteiro BS. Effects of acepromazine-morphine and acepromazine-methadone premedication on the minimum alveolar concentration of isoflurane in dogs. Vet Anaesth Analg. 2016;43:27-34. https://doi.org/10.1111/vaa.12265
  8. Perrin KL, Denwood MJ, Grondahl C, Nissen P, Bertelsen MF. Comparison of etorphine-acepromazine and medetomidineketamine anesthesia in captive impala (aepyceros melampus). J Zoo Wildl Med. 2015;46:870-879. https://doi.org/10.1638/2015-0114.1
  9. Berns SD, Wright JL. Pediatric acepromazine poisoning: the importance of child-resistant packaging for veterinary drugs. Am J Emerg Med. 1993;11:247-248. https://doi.org/10.1016/0735-6757(93)90137-Z
  10. Algren DA, Ashworth A. Acute acepromazine overdose: clinical effects and toxicokinetic evaluation. J Med Toxicol. 2015;11:121-123. https://doi.org/10.1007/s13181-014-0416-1
  11. Bryant SM, Mycyk MB. Human exposure to pet prescription medications. Vet Hum Toxicol. 2002;44:218-219.
  12. Clutton RE. Attempted suicide with acepromazine maleate: a case report. Vet Hum Toxicol. 1985;27:391.
  13. Gaulier JM, Sauvage FL, Pauthier H, Saint-Marcoux F, Marquet P, Lachatre G. Identification of acepromazine in hair: an illustration of the difficulties encountered in investigating drug-facilitated crimes. J Forensic Sci . 2008;53:755-759. https://doi.org/10.1111/j.1556-4029.2008.00706.x
  14. Sterken J, Troubleyn J, Gasthuys F, Maes V, Diltoer M, Verborgh C. Intentional overdose of Large Animal Immobilon. Eur J Emerg Med. 2004;11:298-301. https://doi.org/10.1097/00063110-200410000-00013
  15. Stowell LI. Suicide with the veterinary drug acepromazine. J Anal Toxicol. 1998;22:166-168. https://doi.org/10.1093/jat/22.2.166
  16. Thomas D, Karle CA, Kiehn J. The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. Curr Pharm Des. 2006;12:2271-2283. https://doi.org/10.2174/138161206777585102
  17. Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG $K^+$ channel: target and antitarget strategies in drug development. Pharmacol Res. 2008;57:181-195. https://doi.org/10.1016/j.phrs.2008.01.009
  18. Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440:463-469. https://doi.org/10.1038/nature04710
  19. Martinson AS, van Rossum DB, Diatta FH, Layden MJ, Rhodes SA, Martindale MQ, Jegla T. Functional evolution of Erg potassium channel gating reveals an ancient origin for IKr. Proc Natl Acad Sci U S A. 2014;111:5712-5717. https://doi.org/10.1073/pnas.1321716111
  20. Lees-Miller JP, Kondo C, Wang L, Duff HJ. Electrophysiological characterization of an alternatively processed ERG $K^+$ channel in mouse and human hearts. Circ Res. 1997;81:719-726. https://doi.org/10.1161/01.RES.81.5.719
  21. Drolet B, Vincent F, Rail J, Chahine M, Deschenes D, Nadeau S, Khalifa M, Hamelin BA, Turgeon J. Thioridazine lengthens repolarization of cardiac ventricular myocytes by blocking the delayed rectifier potassium current. J Pharmacol Exp Ther. 1999;288:1261-1268.
  22. Hoehns JD, Stanford RH, Geraets DR, Skelly KS, Lee HC, Gaul BL. Torsades de pointes associated with chlorpromazine: case report and review of associated ventricular arrhythmias. Pharmacotherapy. 2001;21:871-883. https://doi.org/10.1592/phco.21.9.871.34565
  23. Kim KS, Kim EJ. The phenothiazine drugs inhibit hERG potassium channels. Drug Chem Toxicol. 2005;28:303-313. https://doi.org/10.1081/DCT-200064482
  24. Thomas D, Wu K, Kathofer S, Katus HA, Schoels W, Kiehn J, Karle CA. The antipsychotic drug chlorpromazine inhibits HERG potassium channels. Br J Pharmacol. 2003;139:567-574. https://doi.org/10.1038/sj.bjp.0705283
  25. Chae YJ, Jeon JH, Lee HJ, Kim IB, Choi JS, Sung KW, Hahn SJ. Escitalopram block of hERG potassium channels. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:23-32. https://doi.org/10.1007/s00210-013-0911-y
  26. Ganapathi SB, Kester M, Elmslie KS. State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy. Am J Physiol Cell Physiol. 2009;296:C701-710. https://doi.org/10.1152/ajpcell.00633.2008
  27. Dahl SG, Hough E, Hals PA. Phenothiazine drugs and metabolites: molecular conformation and dopaminergic, alpha adrenergic and muscarinic cholinergic receptor binding. Biochem Pharmacol. 1986; 35:1263-1269. https://doi.org/10.1016/0006-2952(86)90269-8
  28. Hals PA, Hall H, Dahl SG. Phenothiazine drug metabolites: dopamine D2 receptor, alpha 1- and alpha 2-adrenoceptor binding. Eur J Pharmacol . 1986;125:373-381. https://doi.org/10.1016/0014-2999(86)90793-4
  29. Peroutka SJ, Synder SH. Relationship of neuroleptic drug effects at brain dopamine, serotonin, alpha-adrenergic, and histamine receptors to clinical potency. Am J Psychiatry. 1980;137:1518-1522. https://doi.org/10.1176/ajp.137.12.1518
  30. Ashoor A, Lorke D, Nurulain SM, Kury LA, Petroianu G, Yang KH, Oz M. Effects of phenothiazine-class antipsychotics on the function of ${\alpha}7$-nicotinic acetylcholine receptors. Eur J Pharmacol. 2011;673:25-32. https://doi.org/10.1016/j.ejphar.2011.10.020
  31. Hals PA, Hall H, Dahl SG. Muscarinic cholinergic and histamine H1 receptor binding of phenothiazine drug metabolites. Life Sci. 1988;43:405-412. https://doi.org/10.1016/0024-3205(88)90519-X
  32. Lee IS, Park TJ, Suh BC, Kim YS, Rhee IJ, Kim KT. Chlorpromazineinduced inhibition of catecholamine secretion by a differential blockade of nicotinic receptors and L-type $Ca^{2+}$ channels in rat pheochromocytoma cells. Biochem Pharmacol. 1999;58:1017-1024. https://doi.org/10.1016/S0006-2952(99)00181-1
  33. Schmidt W, Lang K. Life-threatening dysrhythmias in severe thioridazine poisoning treated with physostigmine and transient atrial pacing. Crit Care Med. 1997;25:1925-1930. https://doi.org/10.1097/00003246-199711000-00036
  34. Wymore RS, Gintant GA, Wymore RT, Dixon JE, McKinnon D, Cohen IS. Tissue and species distribution of mRNA for the IKr-like $K^+$ channel, erg. Circ Res. 1997;80:261-268. https://doi.org/10.1161/01.RES.80.2.261
  35. Gintant GA, Limberis JT, McDermott JS, Wegner CD, Cox BF. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharmacol. 2001;37:607-618. https://doi.org/10.1097/00005344-200105000-00012
  36. Gralinski MR. The dog's role in the preclinical assessment of QT interval prolongation. Toxicol Pathol. 2003;31 Suppl:11-16.
  37. Tontodonati M, Fasdelli N, Moscardo E, Giarola A, Dorigatti R. A canine model used to simultaneously assess potential neurobehavioural and cardiovascular effects of candidate drugs. J Pharmacol Toxicol Methods. 2007;56:265-275. https://doi.org/10.1016/j.vascn.2007.03.005
  38. Wieder ME, Gray BP, Brown PR, Hudson S, Pearce CM, Paine SW, Hillyer L. Identification of acepromazine and its metabolites in horse plasma and urine by LC-MS/MS and accurate mass measurement. Chromatographia. 2012;75:635-643. https://doi.org/10.1007/s10337-012-2234-4
  39. Hashem A, Keller H. Disposition, bioavailability and clinical efficacy of orally administered acepromazine in the horse. J Vet Pharmacol Ther. 1993;16:359-368. https://doi.org/10.1111/j.1365-2885.1993.tb00183.x
  40. Daniel WA. Mechanisms of cellular distribution of psychotropic drugs. Significance for drug action and interactions. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:65-73. https://doi.org/10.1016/S0278-5846(02)00317-2
  41. Brock N. Acepromazine revisited. Can Vet J. 1994;35:458-459.
  42. Darpo B. Spectrum of drugs prolonging QT interval and the incidence of torsades de pointes. European Heart Journal Supplements. 2001;3:K70-80. https://doi.org/10.1016/S1520-765X(01)90009-4
  43. Finley MR, Lillich JD, Gilmour RF Jr, Freeman LC. Structural and functional basis for the long QT syndrome: relevance to veterinary patients. J Vet Intern Med. 2003;17:473-488. https://doi.org/10.1111/j.1939-1676.2003.tb02468.x
  44. Steffey EP, Kelly AB, Farver TB, Woliner MJ. Cardiovascular and respiratory effects of acetylpromazine and xylazine on halothaneanesthetized horses. J Vet Pharmacol Ther. 1985;8:290-302. https://doi.org/10.1111/j.1365-2885.1985.tb00959.x
  45. Ward JL, Schober KE, Fuentes VL, Bonagura JD. Effects of sedation on echocardiographic variables of left atrial and left ventricular function in healthy cats. J Feline Med Surg. 2012;14:678-685. https://doi.org/10.1177/1098612X12447729