• Title/Summary/Keyword: Hypercube Network

Search Result 75, Processing Time 0.018 seconds

Thermal Hydraulic Design Parameters Study for Severe Accidents Using Neural Networks

  • Roh, Chang-Hyun;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.469-474
    • /
    • 1997
  • To provide tile information ell severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore was performed to investigate the effect of thermal hydraulic design parameters ell severe accident progression of pressurized water reactors (PWRs), Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among mile parameters. For training. different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3&4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout(SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to tile other six parameters.

  • PDF

Embedding algorithm among star graph and pancake graph, bubblesort graph (스타 그래프와 팬케익, 버블정렬 그래프 사이의 임베딩 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok;Kim, Sung-Won
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.5
    • /
    • pp.91-102
    • /
    • 2010
  • Star graph is a well-known interconnection network to further improve the network cost of Hypercube and has good properties such as node symmetry, maximal fault tolerance and strongly hierarchical property. In this study, we will suggest embedding scheme among star graph and pancake graph, bubblesort graph, which are variations of star graph. We will show that bubblesort graph can be embedded into pancake and star graph with dilation 3, expansion 1, respectively and pancake graph can be embedded into bubblesort graph with dilation cost O($n^2$). Additionally, we will show that star graph can be embedded into pancake graph with dilation 4, expansion 1. Also, with dilation cost O(n) we will prove that star graph can be embedded into bubblesort graph and pancake graph can be embedded into star graph.

  • PDF

Seismic Fragility of I-Shape Curved Steel Girder Bridge using Machine Learning Method (머신러닝 기반 I형 곡선 거더 단경간 교량 지진 취약도 분석)

  • Juntai Jeon;Bu-Seog Ju;Ho-Young Son
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.899-907
    • /
    • 2022
  • Purpose: Although many studies on seismic fragility analysis of general bridges have been conducted using machine learning methods, studies on curved bridge structures are insignificant. Therefore, the purpose of this study is to analyze the seismic fragility of bridges with I-shaped curved girders based on the machine learning method considering the material property and geometric uncertainties. Method: Material properties and pier height were considered as uncertainty parameters. Parameters were sampled using the Latin hypercube technique and time history analysis was performed considering the seismic uncertainty. Machine learning data was created by applying artificial neural network and response surface analysis method to the original data. Finally, earthquake fragility analysis was performed using original data and learning data. Result: Parameters were sampled using the Latin hypercube technique, and a total of 160 time history analyzes were performed considering the uncertainty of the earthquake. The analysis result and the predicted value obtained through machine learning were compared, and the coefficient of determination was compared to compare the similarity between the two values. The coefficient of determination of the response surface method was 0.737, which was relatively similar to the observed value. The seismic fragility curve also showed that the predicted value through the response surface method was similar to the observed value. Conclusion: In this study, when the observed value through the finite element analysis and the predicted value through the machine learning method were compared, it was found that the response surface method predicted a result similar to the observed value. However, both machine learning methods were found to underestimate the observed values.

Embedding a Mesh of Size 2n ×2m Into a Twisted Cube (크기 2n ×2m인 메쉬의 꼬인 큐브에 대한 임베딩)

  • Kim, Sook-Yeon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.223-226
    • /
    • 2009
  • The twisted cube has received great attention as an interconnection network of parallel systems because it has several superior properties, especially in diameter, to the hypercube. It was recently known that, for even m, a mesh of size $2{\times}2^m$ can be embedded into a twisted cube with dilation 1 and expansion 1 and a mesh of size $4{\times}2^m$ with dilation 1 and expansion 2 [Lai and Tsai, 2008]. However, as we know, it has been a conjecture that a mesh with more than eight rows and columns can be embedded into a twisted cube with dilation 1. In this paper, we show that a mesh of size $2^n{\times}2^m$ can be embedded into a twisted cube with dilation 1 and expansion $2^{n-1}$ for even m and with dilation 1 and expansion $2^n$ for odd m where $1{\leq}n{\leq}m$.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.