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Abstract

To provide the information on severe accident progression is very important for advanced
or new type of nuclear power plant (NPP) design. A parametric study, therefore, was
performed to investigate the effect of thermal hydraulic design parameters on severe accident
progression of pressurized water reactors (PWRs). Nine parameters, which are considered
important in NPP design or severe accident progression, were selected among the various
thermal hydraulic design parameters. The backpropagation neural network (BPN) was used
to determine parameters, which might more strongly affect the severe accident progression,
among nine parameters. For training, different input patterns were generated by the latin
hypercube sampling (LHS) technique and then different target patterns that contain core
uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units
3&4 using modular accident analysis program (MAAP) 3.0B code. Three different severe
accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout
(SBO), were considered in this analysis. Results indicated that design parameters related to
refueling water storage tank (RWST), accumulator and steam generator (S/G) have more
dominant effects on the progression of severe accidents investigated, compared to the other
six parameters.

I. Introduction

The most important design objective of advanced or new type of nuclear power plants
(NPPs) is to enhance plant safety, even if the design objectives of them emphasize plant
reliability and availability as well as cost reduction in construction, operation and
maintenance. There are various desirable approaches for plant safety and for further
reduction of residual risk for nuclear power plant accidents, mainly for core melt accidents
and for radioactive release to the environment. One approach among them is to increase
safety design margins so that the primary system may have a longer response time and be
less sensitive to plant abnormal initiative events, transients and severe accidents[1].

If so, it should be determined whether NPP has good safety design margins for severe
accidents or not. It can be verified by core uncovery time and vessel failure time which are
very important factors associated with severe accident management{2]. These two parameters
could be affected by how to determine the thermal hydraulic design parameters. However, it
is difficult to find which design parameters are the most effective and how much effective
they are with a view to mitigating severe accidents. There have been few related works but
MELCOR sensitivity studies which Juan J. Carbajo[3] performed for a low-pressure, short-
term station blackout at the Peach Bottom plant in 1994.
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The objectives of this study are 1) to investigate the effect of thermal hydraulic design
parameters on severe accident progression, 2) to determine parameters which affect the
severe accident progression more strongly and 3) to propose the PWR design guidelines for
severe accident mitigation.

Nine parameters, which are considered important in NPP design or severe accident
progression, were selected among the various thermal hydraulic design parameters. The
parametric study for design parameters selected was accomplished using backpropagation
neural network (BPN). For training, different input patterns were generated by the latin-
hypercube sampling (LHS) technique[4] and then different target patterns that contain core-
uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Ulints
3&4 using modular accident analysis program (MAAP) 3.0B code. Three different severe
accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout
(SBO), were considered in this analysis.

I1. Backpropagation Neural Network as a Parameter Estimator

An artificial neural network (ANN),
such as BPN, is composed of elements that '
are analogous to the elementary functions e O
of biological neurons. ANNs have the ‘ . ) n-th hidden layer

output layer

capability to learn complex relationships w':“\\
from a set of associated input-output. The

ANNs also have the characteristic of .

tolerance against code error, such as noise, - g

owing to the massive internal structure of O **e @ W O re-th hiddea layer
the network[5]. They have been applied to
many areas involving NPPs, such as plant
malfunction diagnosis[6], signal
prediction and validation[7], vessel failure
identification[8], etc.

A schematic depiction of BPN is
illustrated in Fig.1. A successfully trained
neural network works essentially as a
mapping function, which maps a set of Fig. 1 Backpropagation Neural Network with various
input vectors I to a set of output vectors hidden layers
O . The network mapping process is that
when an input pattern, I, is received by the neurons in the input layer, it first mapped as an
output pattern, H, of the first hidden layer, and then, H, is mapped forward to the second

hidden layer. Finally, an output pattern, O, is formed. Mathematically, the mapping process
is the following:

input layer

Hy =/ u;1,+6)) i =12,....0 )
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where f(x)= 1/(1 +e™%) is the sigmoid transfer function and & is the sigmoid slope. 0,

and f, are the threshold values of the i"”th neuron in the mth hidden layer and the kth
neuron in the output layers, réspectively. a, b and [, is a number of neurons-in input layer,
output layer and the mth hidden layer, respectively.

This sigmoid function is used many times as the network is trained. To reduce the
computing time, the non-linear function by Paul J. Werbos[9] is used the activation function
in this paper. This function is as follows:

1
S 4
S 1-x+05xx?’ * <0 )

=le— 0 5
Sx)=1 l+x+05x x*’ x> %)

The partial derivative, &0, /&l , is the rate of change in 0, with respect to a change in
I;. Therefore, &0, / Al can be used to measure the importance among the input variables,

I;, by ranking to the value of lo'Ok ez j}. The partial derivative is expressed by applying
chain rule as described in Eq. (6).

2, &, i H d
: = fl 11,1—]“' ’ =—Ok(1—'0k)ZF;1 (6)
a, "ar A a s
where
1 2
k= 31{',1, - 1'1,]1 )u_,' @)
1 = .
F, =5 HIA-H) DWeF,  m=123..n 8
"=l
Three layer BPN including one hidden layer is considered in this study, then &0, / a,; is
represented by Eq.(9).
2, &, H, 1 b1 o
— =——="==0/(1- —H,(1-H))u, 9

The equation shows that the partial derivative depends not only on the network

connection weighting factors, u; and vilj , which are the memory of the training, but also on
the activation of neurons in both hidden layer and output layer.

1. Method
3.1 Input and Output Preparation for Training

Nine thermal hydraulic design parameters, which are important in NPP design or severe
accident progression, are considered in the training interval as shown in Table 1. They are
used as input variables of BPN. Two LOCAs and SBO, which are representative severe
accidents, were selected. NPP design parameters can be determined various values by
designer. Therefore, independence among nine parameters is assumed in the training interval
and the optimized random sampling based on LHS technique is adopted to effectively
generate different input patterns in the design space. Different target patterns that contain
core uncovery time and vessel failure time were obtained for YGN 3&4 using MAAP 3.0B.
Brief descriptions of three severe accidents and MAAP code running results for nominal
value of YGN 3&4 are shown in Table 2.
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Table 1 Input Parameters and Training Interval for YGN 3&4

Parameters Nominal value Training Interval
RCS Pressure (MPa) 15.51 15.20-15.82
RCS Avg. Temperature - (°C) 311.55 308.43-317.78
RCS Mass Flow Rate (kg/s) 55.100e6 52.345e6 - 57.855¢6
Vessel Volume (m®) 102.090 100.048 - 107.195
Pressurizer Volume (m?®) 51.40 . 48.83 - 53.97
S/G Heat Transfer Area (m?) 9,522.60 9,046.47 - 9,998.73
S/G Volume (m?) 67,244.0 63,881.8 - 70,606.2
RWST Water Mass(kg) 1.780e6 1.691e6 - 1.869¢6
Accumulator Volume (m®) 68.130 64.724 - 71.537

Table 2 Description and MAAP code Running Results for Three Severe Accidents

. . Core Vessel
Accident Description uncovery(sec) failure(sec)
small LOCA (0.00218 m2)
LOCA 1 in intermediate leg 17681.90 23709.97
intermediate LOCA (0.02 m2)
LOCA 2 in cold leg 12529.42 18853.38
SBO power not available, small seal LOCA 23089.85 47875.52

The overall procedure of this investigation is shown in Fig. 2. The starting point is the
selection of input and output parameters. As shown in the figure, different input patterns are
generated using LHS technique and different output patterns, which include core uncovery
time and vessel failure time, are obtained from MAAP code. Data obtained from LHS and
MAAP code running are divided into two sets for BPN training and simulation. The model of
the plant behavior is obtained through BPN training. Finally

parametric study for nine thermal hydraulic .design '"é”;Zf;iﬁ,’n"s
parameters is established. (LHS)
Output Pattern

3.2 Neural Modeling (ﬁz‘;’a;fgg)

The training and simulation data listed in Table 3 are
prepared from MAAP code. Optimized BPN structure with Training Data Simulation
three layer is obtained by varying the number of neurons in data
hidden layer. The network is set up with 9 neurons in the —
input layer (8 neurons for SBO), 20 in hidden layer (18 for Training
SBO), and 2 in the output layer. RWST volume is not (BPN)
considered in analysis of SBO accident because engineered Simu‘}aﬁon
safety feature is not available during SBO. As shown in the (BPN)
table, the network was successfully trained with sufficiently
small system error listed in Table 3. Here, error assessment No
is performed with the simulation data which are not used in
the BPN training. The RMS errors of the simulation are
0.031%, 0.047%, and 0.115% for LOCA 1, for LOCA 2, Yes
and for SBO, respectively. The small simulation error Parametric Stud
indicates that the training is successful and the well trained (BPN)
network can be used to analyze the effect of thermal
hydraulic design parameters on severe accident progression. Fig. 2 Overall Procedure
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LOCA2 11 0.01 0.047
SBO ' 12 0.020 0.115

IV. Results and Conclusions

Since the partial derivatives may be different by using different input patterns, the results of
this paper were represented by pattern average of the absolute values of the partial
derivatives over all input patterns.

Table 4. Results for Core Uncovery Time

——

tloo, /)y

o LOCA [ . LOCA? ____ SBO

RCS pressure 6 (0.303) . 8(0.135) 7 (0.235)
RCS temperature 7 (0.303) 6(0.213) 8(0.228)
RCS mass flow rate 9 (0.275) 9(0.108) 6 (0.272)
Vessel volume 8(0.297) 4 (0.324) 5(0.291)
PRZR volume 4 (0.369) 5(0.234) 4 (0.293)
S/G Area 5(0.318) 7 (0.207) 3(0.393)
S/G volume 2(0.503) 1(0.472) 2 (0.418)
RWST volume 1 (0.628) 2 (0.402) NaN

Accumulator volume 3 (0.476) 3 (0.329) 1 (0.568)

Table 5. Results for Vessel Failure Time

o, /)y
. LOCAl _Loca2 |  SBO
RCS pressure 8 (0.004) 7 (0.004) 8 {0.004)
RCS temperature 7 (0.005) 8 (0.004) 7 (0.004)
RCS mass flow rate © 9(0.004) 9 (0.003) 6 (0.005)
Vessel volume 5(0.220) 2 (0.334) 5(0.203)
PRZR volume - 4(0.288) 6 (0.137) 4 (0.206)
S/G Area 3 (0.290) " 4(0.214) 1(0.419)
S/G volume 6(0.212) 1(0.347) 3(0.239)
RWST volume 1(0.360) - 5(0.185) NaN~
Accumulator volume 2 (0.298) 3(0.222) 2 (0.362)

Table 4 shows the ranking results for core uncovery time according to order of important
of nine thermal hydraulic design parameters. As shown in the table, although the initiating
accidents are different, the parameters, which have higher importance rank, is very similar. In
addition, it shows that RWST, S/G and accumulator volume have more dominant effects,
compared to other parameters. This is resulted the RCS water inventory increased due to the
water injection of RWST and accumulator, and secondary heat removal capacity enhanced
due to the increased S/G water volume during the accidents. PRZR volume is somewhat
dominant, although the effectiveness on core uncovery time is not much than above three
parameters mentioned. The average value of RWST volume for LOCA 1 is 0.628. It means
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that for the severe accident investigated, LOCALI, core uncovery time can be delayed till
62.8% of nominal core uncovery time by increasing 100% RWST volume.

Table 5 shows the ranking results for vessel failure time, similar to core uncovery time.
The average value of partial derivative for RCS pressure, temperature and mass flow rate is
nearly zero. It means that vessel failure can’t be delayed by varying design values of these
three parameters. Other parameters effect on vessel failure remarkably, compared to these
three parameters. However, the effectiveness of dominant parameters on vessel failure is
smaller than on core uncovery because the average partial derivative values of all dominant
parameters for core uncovery are larger than the largest value of average partial derivative
for vessel failure.

To investigate the effect of thermal hydraulic design parameters on severe accident
progression of PWR, a parameteric study was performed using BPN. From this study, the
following conclusions were drawn.

1) A parametric study model for BPN with various hidden layers was developed by
applying chain rule.

2) RWST, accumulator, and S/G volume were most important parameters among nine
parameters in severe accident progression investigated. Water capacity in NPP design
should be increased to expand response time on severe accidents as much as possible.
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