• Title/Summary/Keyword: Hyperbolic

Search Result 1,013, Processing Time 0.026 seconds

Dynamic Analysis of Specimen Under Ultrasonic Fatigue Using Finite Element Method (초음파 피로시험시 시험편의 유한요소 동적 해석)

  • Myeong, No-Jun;Choi, Nak-Sam;Kwon, Hena
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.711-717
    • /
    • 2014
  • An accelerated ultrasonic fatigue test (UFT) was used for analyzing very high cycle fatigue (VHCF, $N_f$ > $10^7$) behaviors of a specimen with a test resonance of 20 kHz. Using the finite element method (FEM), the dynamic behaviors of the specimen was studied by calculating the stresses along its gauge portion, with displacement. The shape of gauge portion profile was assumed to be a hyperbolic according to the stress equation of the UFT. However, as the specimen used in the test had a circular arc profile, the FEM was used for studying the local stresses for two cases of the gauge profile. The results were compared with those obtain from the stress equation of the UFT. The dynamic behavior of the gauge portion could be understood for further comparison with the actual results.

Development of a Simplified Treatment Technique of Partial Wave Reflection and Transmission for Mild-Slope Wave Model (완경사 방정식에서의 간편화된 파의 부분 반사 및 투과 처리기법)

  • Chun Je-Ho;Ahn Kyung-Mo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.84-96
    • /
    • 2006
  • This paper presents a simplified numerical method that can be used to incorporate the partial reflection and transmission of water waves in the hyperbolic mild-slope equation. For given reflection and transmission coefficients, wave fields around a porous breakwater including reflection, transmission, and diffraction can be simulated accurately. For the verification of the proposed method, numerical experiments have been carried out and compared with analytic solutions given by Yu(1995) and McIver(1999). The proposed method is easy to implement and is computationally efficient. It is demonstrated that the method performs well with a sloping bottom bathymetry and varying incident wave angles.

Hybrid Element Model for Wave Transformation Analysis (파랑 변형 해석을 위한 복합 요소 모형)

  • 정태화;박우선;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.159-166
    • /
    • 2003
  • In this study, we develop a finite element model to directly solve the Laplace equation while keeping the same computational efficiency as the models based on the extended mild-slope equation which has been widely used for calculation of wave transformation in shallow water. For this, the computational domain is discretized into finite elements with a single layer in the vertical direction. The velocity potential in the element is then expressed in terms of the potentials at the nodes located at water surface, and the Galerkin method is used to construct the numerical model. A common shape function is adopted in horizontal direction, and the cosine hyperbolic function in vertical direction, which describes the vertical behavior of progressive waves. The model was developed for vertical two-dimensional problems. In order to verify the developed model, it is applied to vertical two-dimensional problems of wave reflection and transmission. It is shown that the present finite element model is comparable to the models based on extended mild-slope equations in both computational efficiency and accuracy.

Three Body Problem and Formation of Binary System (3체 문제와 연성계의 형성)

  • Jae Woo Park;Kyu Hong Choi;Kyong Chol Chou
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.19-33
    • /
    • 1985
  • The singularities of differential Newtonian equation of motion in three body problem cause the loss of accuracy and the considerable increase of the computer time. These singularities could be eliminated during the process of regularization to transform the independent variables and the coordinate of Newtonian equations of motion. In this study, we calculated the positions and velocities of three body along the time scale to find out the unique solution of regularized Newtonian equations of motion with the $5^{th}$ order Runge-Kutta method by assuming the suitable initial velocities and positions. As the results of these calculations it is shown that the tripe stellar system eventually distintegrated, two of them formed a binary, and the last one escaped from this system with a hyperbolic orbit. This may suggest one possible explanation for the binary formation.

  • PDF

Bending analysis of functionally graded thick plates with in-plane stiffness variation

  • Mazari, Ali;Attia, Amina;Sekkal, Mohamed;Kaci, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.409-421
    • /
    • 2018
  • In the present paper, functionally graded (FG) materials are presented to investigate the bending analysis of simply supported plates. It is assumed that the material properties of the plate vary through their length according to the power-law form. The displacement field of the present model is selected based on quasi-3D hyperbolic shear deformation theory. By splitting the deflection into bending, shear and stretching parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Governing equations are derived from the principle of virtual displacements. Numerical results for deflections and stresses of powerly graded plates under simply supported boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other shear deformation theories and so it becomes more attractive due to smaller number of unknowns. Some numerical results are provided to examine the effects of the material gradation, shear deformation on the static behavior of FG plates with variation of material stiffness through their length.

A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells

  • Allam, Othmane;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Mahmoud, S.R.;Adda Bedia, E.A.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.185-201
    • /
    • 2020
  • This research is devoted to investigate the bending and free vibration behaviour of laminated composite/sandwich plates and shells, by applying an analytical model based on a generalized and simple refined higher-order shear deformation theory (RHSDT) with four independent unknown variables. The kinematics of the proposed theoretical model is defined by an undetermined integral component and uses the hyperbolic shape function to include the effects of the transverse shear stresses through the plate/shell thickness; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by employing the principle of virtual work and solved via Navier-type analytical procedure. To verify the validity and applicability of the present refined theory, some numerical results related to displacements, stresses and fundamental frequencies of simply supported laminated composite/sandwich plates and shells are presented and compared with those obtained by other shear deformation models considered in this paper. From the analysis, it can be concluded that the kinematics based on the undetermined integral component is very efficient, and its use leads to reach higher accuracy than conventional models in the study of laminated plates and shells.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

The DFN-DEM Approach Applied to Investigate the Effects of Stress on Mechanical and Hydraulic Rock Mass Properties at Forsmark, Sweden (암반균열망-개별요소법 수치실험을 통해 살펴본 스웨덴 포쉬마크지역 암반의 역학적 및 수리적 물성에 초기응력이 미치는 영향)

  • Min, K.B.;Stephansson, O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2011
  • The purpose of this study is to demonstrate the effect of in-situ rock stresses on the deformability and permeability of fractured rocks. Geological data were taken from the site investigation at Forsmark, Sweden, conducted by Swedish Nuclear Fuel and Waste Man-agement Company (SKB). A set of numerical experiments was conducted to determine the equivalent mechanical properties (essentially, elastic moduli and Poisson's ratio) and permeability, using a Discrete Fracture Network-Discrete Element Method (DFN-DEM) approach. The results show that both mechanical properties and permeability are highly dependent on stress because of the hyperbolic nature of the stiffness of fractures, different closure behavior of fractures, and change of fluid pathways caused by deformation. This study shows that proper characterization and consideration of in-situ stress are important not only for boundary conditions of a selected site but also for the understanding of the mechanical and hydraulic behavior of fractured rocks.

Numerical Simulation of Two-Dimensional Shipping Water by Using a Simplified Model (단순화 모델에 의한 2차원 갑판침입수의 수치 시뮬레이션)

  • Kim, Yong J.;Kim, In C.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.1-12
    • /
    • 1996
  • Hydrodynamic characteristics of shipping water on deck are investigated by using a simplified two-dimensional model. Formulation of the shipping water on deck leads to a nonlinear hyperbolic system of equations based on the shallow-water wave theory. Time-domain solution of these equations are obtained numerically using a finite difference method which adopts predictor-corrector method for time-marching and 2nd upwind differencing method for convection term calculation. To confirm the validity of the present numerical method, we calculated some shallow-water wave problems accompanying a bore and compared the obtained results with the analytic solutions. We found good agreements between them. Though the calculation results of shipping water on deck, we show that the shipping water flows into the deck as a rarefying wave arid grows into a bore after colliding with a deck structure. Also we examined the effects of acceleration and slope of deck and found that they have significant influences on the flow of shipping water.

  • PDF

Predictive models of hardened mechanical properties of waste LCD glass concrete

  • Wang, Chien-Chih;Wang, Her-Yung;Huang, Chi
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.577-597
    • /
    • 2014
  • This paper aims to develop a prediction model for the hardened properties of waste LCD glass that is used in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. We also summarized the testing results of the hardened properties of a variety of waste LCD glass concretes and discussed the effect of factors such as the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. This study also applied a hyperbolic function, an exponential function and a power function in a non-linear regression analysis of multiple variables and established the prediction model that could consider the effect of the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. Compared with the testing results, the statistical analysis shows that the coefficient of determination $R^2$ and the mean absolute percentage error (MAPE) were 0.93-0.96 and 5.4-8.4% for the compressive strength, 0.83-0.89 and 8.9-12.2% for the flexural strength and 0.87-0.89 and 1.8-2.2% for the ultrasonic pulse velocity, respectively. The proposed models are highly accurate in predicting the compressive strength, flexural strength and ultrasonic pulse velocity of waste LCD glass concrete. However, with other ranges of mixture parameters, the predicted models must be further studied.