• Title/Summary/Keyword: Hyperbola

Search Result 82, Processing Time 0.029 seconds

Development of A Three-Variable Canopy Photosynthetic Rate Model of Romaine Lettuce (Lactuca sativa L.) Grown in Plant Factory Modules Using Light Intensity, Temperature, and Growth Stage (광도, 온도, 생육 시기에 따른 식물공장 모듈 재배 로메인 상추의 3 변수 군락 광합성 모델 개발)

  • Jung, Dae Ho;Yoon, Hyo In;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.268-275
    • /
    • 2017
  • The photosynthetic rates of crops depend on growth environment factors, such as light intensity and temperature, and their photosynthetic efficiencies vary with growth stage. The objective of this study was to compare two different models expressing canopy photosynthetic rates of romaine lettuce (Lactuca sativa L., cv. Asia Heuk romaine) using three variables of light intensity, temperature, and growth stage. The canopy photosynthetic rates of the plants were measured 4, 7, 14, 21, and 28 days after transplanting at closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$) using light-emitting diodes, in which indoor temperature and light intensity were designed to change from 19 to $28^{\circ}C$ and 50 to $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. At an initial $CO_2$ concentration of $2,000{\mu}mol{\cdot}mol^{-1}$, the canopy photosynthetic rate began to be calculated with $CO_2$ decrement over time. A simple multiplication model expressed by simply multiplying three single-variable models and a modified rectangular hyperbola model were compared. The modified rectangular hyperbola model additionally included photochemical efficiency, carboxylation conductance, and dark respiration which vary with temperature and growth stage. In validation, $R^2$ value was 0.849 in the simple multiplication model, while it increased to 0.861 in the modified rectangular hyperbola model. It was found that the modified rectangular hyperbola model was more suitable than the simple multiplication model in expressing the canopy photosynthetic rates affected by environmental factors (light Intensity and temperature) and growth factor (growth stage) in plant factory modules.

The Influence of Load Increment Ratio on the Secondary Consolidation (하중증가율(荷重增加率)이 이차압밀(二次壓密)에 미치는 영향(影響))

  • Chee, In Taeg;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.110-117
    • /
    • 1983
  • This study was conducted to investigate the influence of load increment ratio on the secondary consolidation for the marine clay at Asan bay by the hyperbola method. The results were summarized as follow: 1. Calculated secondary consolidation by the hyperbola method was slightly less than the value of Casagrande's log t method, but the difference was very little, and the secondary consolidation could be easily calculated by the hyperbola method even if load increment ratio was small. 2. The secondary consolidation ratio was increased with the decrement of load increment ratio, and the creep phenomenon of the settlement curve occurred under the condition of small load increment ratio seemed to be caused by the secondary consolidation. 3. The secondary consolidation ratio occurred during the primary consolidation was irregular in the overconsolidated range, but it was increased with the decrement of load increment ratio in the normally consolidated range. 4. The coefficient of secondary consolidation was increased with the increment of the consolidation load, made a point of the inflection near preconsolidation. And the coefficient of secondary consolidation was decreased from consolidation load $2kg/cm^2$, showed independent of load increment ratio. 5. The coefficient of secondary consolidation was showed in proportion to compression index.

  • PDF

Application of major plant nutrient releasing model and N2O emissions to the leachate from the mixtures of rice hull biochar and organic fertilizer materials (왕겨 바이오차와 유기농자재 혼합에 따른 주요 양분 용출 모델 적용 및 N2O 배출량 산정)

  • DongKeon Lee;JaeLee Choi;ChangKi Shim;JooHee Nam;SeokIn Youn;JeongSeok Song;Dogyun Park;JoungDu Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • This batch experiment evaluated the impacts of major plant nutrient releases by applying the modified Hyperbola model on the leachates and N2O emissions from incorporated rice hull biochar with organic fertilizer materials. The treatments consisted of the control as incorporated with organic fertilizer materials, the incorporated rice hull biochar with organic fertilizer materials, and the incorporated plasma-activated rice hull biochar with organic fertilizer materials under redox conditions. The results indicated that the maximum release amount of NH4-N was 3486.3 mg L-1 in the control, and their reduction rates of NH4-N, NO3-N, PO4-P, and K were 8.0%, 17.5% 44.3.0% and 8.7%, respectively, relative to the control. In the control, the highest soluble amount of PO4-P was 681.0 mg L-1. The estimations for accumulated NH4-N, NO3-N, PO4-P, and K-releases in all the treatments were significantly (p<0.01) fitted with a modified Hyperbola model. For greenhouse gas emissions, the lowest cumulative N2O was 340.4 mg kg-1 in the soil incorporated with plasma-activated rice hull biochar, and the reduction rates were 27.8% and 86.4% in the rice hull biochar and plasma-activated rice hull biochar treatments, respectively, compared to the control. Therefore, it concluded that the incorporated rice hull biochar can be especially useful for controlling PO4-P release and N2O emissions for bio-fertilizer applications.

A Certain Class of Root Clustering of Control Systems with Structured Uncertainty (구조적불확실성을 갖는 제어시스템의 Root Clustering 해석)

  • 조태신;김영철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1259-1268
    • /
    • 1995
  • This note presents the robust root clustering problem of interval systems whose characteristic equation might be given as either a family of interval polynomials or a family of polytopes. Corresponding to damping ratio and robustness margin approximately, we consider a certain class of D-region such as parabola, left-hyperbola, and ellipse in complex plane. Then a simpler D-stability criteria using rational function mapping is presented and prove. Without .lambda. or .omega. sweeping calculation, the absolute criteria for robust D-stability can be determined.

  • PDF

ON THE SHAPE OF MAXIMUM CURVE OF eaz2+bz+c

  • KIM, MIHWA;KIM, JEONG-HEON
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.75-82
    • /
    • 2017
  • In this paper, we investigate the proper shape and location of the maximum curve of transcendental entire functions $e^{az^2+bz+c}$. We show that the alpha curve of $e^{az^2+bz+c}$ is a subset of a rectangular hyperbola, and the maximum curve is the connected set originating from the origin as a subset of the alpha curve.

CHORD AND AREA PROPERTIES OF STRICTLY CONVEX CURVES

  • Kim, Dong-Soo;Kim, Incheon
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.801-815
    • /
    • 2021
  • Ellipses have a lot of interesting geometric properties. It is quite natural to ask whether such properties of ellipses and some related ones characterize ellipses. In this paper, we study some chord properties and area properties of ellipses. As a result, using the curvature and the support function of a strictly convex curve, we establish four characterization theorems of ellipses and hyperbolas centered at the origin.

How To Teach The Quadratic Curves Through Historical Overview (역사적 고찰을 통한 이차곡선의 지도방안)

  • Jang, Mi-Ra;Kang, Soon-Ja
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.731-744
    • /
    • 2010
  • Nowadays in school mathematics, the skill and method for solving problems are often emphasized in preference to the theoretical principles of mathematics. Students pay attention to how to make an equation mechanically before even understanding the meaning of the given problem. Furthermore they do not get to really know about the principle or theorem that were used to solve the problem, or the meaning of the answer that they have obtained. In contemporary textbooks the conic section such as circle, ellipse, parabola and hyperbola are introduced as the cross section of a cone. But they do not mention how conic section are connected with the quadratic equation or how these curves are related mutually. Students learn the quadratic equations of the conic sections introduced geometrically and are used to manipulating it algebraically through finding a focal point, vertex, and directrix of the cross section of a cone. But they are not familiar with relating these equations with the cross section of a cone. In this paper, we try to understand the quadratic curves better through the analysis of the discussion made in the process of the discovery and eventual development of the conic section and then seek for way to improve the teaching and learning methods of quadratic curves.

A Study on Underwater Source Localization Using the Wideband Interference Pattern Matching (수중에서 광대역 간섭 패턴 정합을 이용한 음원의 위치 추정 연구)

  • Chun, Seung-Yong;Kim, Se-Young;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.415-425
    • /
    • 2007
  • This paper proposes a method of underwater source localization using the wideband interference patterns matching. By matching two interference patterns in the spectrogram, it is estimated a ratio of the range from source to sensor5, and then this ratio is applied to the Apollonius circle. The Apollonius circle is defined as the locus of all points whose distances from two fixed points are in a constant value so that it is possible to represent the locus of potential source location. The Apollonius circle alone, however still keeps the ambiguity against the correct source location. Therefore another equation is necessary to estimate the unique locus of the source location. By estimating time differences of signal arrivals between source and sensors, the hyperbola equation is used to get the cross point of the two equations, where the point being assumed to be the source position. Simulations are performed to get performances of the proposed algorithm. Also, comparisons with real sea experiment data are made to prove applicability of the algorithm in real environment. The results show that the proposed algorithm successfully estimates the source position within an error bound of 10%.

SOME EQUIVALENT CONDITIONS FOR CONIC SECTIONS

  • Kim, Dong-Soo;Seo, Soojeong;Beom, Woo-In;Yang, Deukju;Kang, Juyeon;Jeong, Jieun;Song, Booseon
    • The Pure and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.315-325
    • /
    • 2012
  • Let A and B denote a point, a line or a circle, respectively. For a positive constant $a$, we examine the locus $C_{AB}$($a$) of points P whose distances from A and B are, respectively, in a constant ratio $a$. As a result, we establish some equivalent conditions for conic sections. As a byproduct, we give an easy way to plot points of conic sections exactly by a compass and a straightedge.

Fault Detection and Localization using Wavelet Transform and Cross-correlation of Audio Signal (소음 신호의 웨이블렛 변환 및 상호상관 함수를 이용한 고장 검출 및 위치 판별)

  • Ji, Hyo Geun;Kim, Jung Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.327-334
    • /
    • 2014
  • This paper presents a method of fault detection and fault localization from acoustic noise measurements. In order to detect the presence of noise sources wavelet transform is applied to acoustic signal. In addition, a cross correlation based method is proposed to calculate the exact location of the noise allowing the user to quickly diagnose and resolve the source of the noise. The fault detection system is implemented using two microphones and a computer system. Experimental results show that the system can detect faults due to artifacts accidentally inserted during the manufacturing process and estimate the location of the fault with approximately 1 cm precision.