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ON THE SHAPE OF MAXIMUM CURVE OF eaz
2+bz+c

MIHWA KIM AND JEONG-HEON KIM∗

Abstract. In this paper, we investigate the proper shape and location of

the maximum curve of transcendental entire functions eaz
2+bz+c. We show

that the alpha curve of eaz
2+bz+c is a subset of a rectangular hyperbola,

and the maximum curve is the connected set originating from the origin as
a subset of the alpha curve.
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1. Intorduction

For an entire function f(z), we define the maximum curve of f(z) by the set
of all z ∈ C such that

|z| = r, |f(z)| = max
|ζ|=r

|f(ζ)| = M(r, f), r ≥ 0.

Our concerns are finding the proper shape and location of the maximum curve

of the function f(z) = eaz
2+bz+c.

We begin with two known results related to the maximum curve of f(z). W.
K. Hayman found the number of candidates for the maximum curve of ep(z) near
the origin.

Theorem 1 ([1]). Suppose that

f(z) = 1 + akz
k + · · · , (ak 6= 0)

is analytic at z = 0. Then, for some ε > 0, the points z with |z| ≤ ε, such that
|z| = ρ, |f(z)| = M(ρ, f), form at most k regular arcs, which make angles of
2pπ
k with each other at z = 0, where p is a positive integer.
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If p(z) is a polynomial of degree two, then we may write

f(z) = ep(z) = a0 + akz
k + · · · , (k = 1 or 2).

So the function f(z) = ep(z) has at most two maximum curves starting from the
origin.

To state the second known result, we let

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, (an 6= 0, n ≥ 1),

where
ak = ske

iαk , z = reiθ, (k = 0, 1, 2, · · · , n).

We write
τj = −αn

n
+ (2j − 1)

π

2n
and Lj = {reiτj : r > 0},

where j = 0, 1, 2, · · · , 2n− 1. We divide the complex plane into 2n open sectors

Sj := {z : τj < Arg z < τj+1}, (j = 0, 1, 2, · · · , 2n− 1)

sharing the same vertex at the origin.

From the following theorem, we can guess the location of the maximum curve
of ep(z).

Theorem 2 ([2]). The function f(z) = ep(z) has radial limits on each sector Sj:

lim
|z|=r→∞
z∈Sj

|f(z)| =
{

0 if j is odd,
∞ if j is even.

Furthermore, the limits are uniform on any closed subsector of Sj.

The above theorem says that radial limits tend to infinity on some sectors and
that sectors are determined by the argument of the leading coefficient of p(z).
From Theorem 2, we may assume that maximum curves of ep(z) are located in
some sectors S2j for sufficiently large r.

Previous two theorems give us rough and limited information on the maximum
curve of ep(z) near the origin and the infinity. In this paper we study entire shape
and proper location of the maximum curve of ep(z), where p(z) is a polynomial
of degree two.

2. Beta curve and alpha curve of ep(z)

For an entire function f(z), we define a new function

A(z) = z
f ′(z)

f(z)

as T. F. Tyler did.([3]) Using the polar form of the Cauchy-Riemann equations,
we obtain

A(z) = r
∂

∂r
log

∣∣f(reiθ)
∣∣− i ∂∂θ ∣∣f(reiθ)

∣∣
|f(reiθ)|

.
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We follow Tyler’s phrase again.

Definition 3. We call the curve where ∂
∂θ log

∣∣f(reiθ)
∣∣ = 0 the beta curve of

f(z), and those parts of the beta curve where r ∂∂r log
∣∣f(reiθ)

∣∣ is positive will be
called the alpha curve of f(z).

From the definition we know that the alpha curve is a subset of beta curve,
and the maximum curve is a subset of alpha curve.

Since

∂

∂θ
|f(reiθ)| = ∂

∂θ
[eRe p(reiθ)] =

∂

∂θ
[Re p(reiθ)] · eRe p(reiθ)

and eRe p(reiθ) 6= 0, the beta curve of ep(z) is the set of all points z = reiθ such
that

∂

∂θ
[Re p(reiθ)] = 0.

We set

p(z) = az2 + bz + c

= (a1 + a2i)z
2 + (b1 + b2i)z + (c1 + c2i),

where a 6= 0 and aj , bj , cj (j = 1, 2) are real numbers.

Theorem 4. The beta curve of f(z) = ep(z) is a hyperbola.

Proof. Let z = reiθ = x+ iy. Then we have

∂

∂θ

[
Re p(reiθ)

]
=

∂

∂θ
[a1r

2(cos2 θ − sin2 θ)− 2a2r
2 cos θ sin θ

+ b1r cos θ − b2r sin θ + c1]

= − 2a1r
2 sin 2θ − 2a2r

2 cos 2θ − b1r sin θ − b2r cos θ

= −
[
4a1xy + 2a2(x2 − y2) + b1y + b2x

]
.

So the beta curve can be written as a quadratic equation

4a1xy + 2a2(x2 − y2) + b1y + b2x = 0. (1)

Since we assumed a = a1 + a2i 6= 0, the discriminant

D =

∣∣∣∣2a2 2a1
2a1 −2a2

∣∣∣∣ = −4(a1
2 + a2

2)

of the quadratic equation (1) always has negative value. Hence the beta curve
of f(z) = ep(z) is a hyperbola. �

Here we state some properties of the beta curve of ep(z). We denote the center
of the beta curve by O′ in the plane. The coordinate of the center O′ is given
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by

O′ = (xc, yc) =

(
− a1b1 + a2b2

4(a12 + a22)
,− a1b2 − a2b1

4(a12 + a22)

)
.

And the beta curve of ep(z) is a rectangular(equilateral) hyperbola.

A quadratic equation

Ax2 +Bxy + Cy2 +Dx+ Ey = 0

is said to be degenerated if it is a product of two linear equations. In this paper
we do not consider the degenerated case which is relatively simple.

The alpha curve of f(z) is a subset of the beta curve satisfying

r
∂

∂r
log |f(reiθ)| > 0.

In other words, the alpha curve of f(z) is the set of all points z = reiθ such that

∂

∂θ
|f(reiθ)| = 0 and r

∂

∂r
log |f(reiθ)| > 0.

From Theorem 4, we knew that the beta curve of ep(z) is a hyperbola of the form

4a1xy + 2a2(x2 − y2) + b1y + b2x = 0.

And since

log |f(reiθ)| = log |ep(re
iθ)| = Re p(reiθ)

= a1r
2 cos 2θ − a2r2 sin 2θ + b1r cos θ − b2r sin θ + c1,

we obtain

r
∂

∂r
log |f(reiθ)| = 2a1r

2 cos 2θ − 2a2r
2 sin 2θ + b1r cos θ − b2r sin θ

= 2a1(x2 − y2)− 4a2xy + b1x− b2y.

Hence the alpha curve of ep(z) is a subset of the beta curve lying inside the region

2a1(x2 − y2)− 4a2xy + b1x− b2y > 0. (2)

The boundary of the region (2),

r
∂

∂r
Re p(reiθ) = 2a1(x2 − y2)− 4a2xy + b1x− b2y = 0 (3)

is also a rectangular hyperbola. The beta curve of ep(z) and the boundary (3) of
the region (2) share the same center (xc, yc), and the hyperbola (3) also passes
through the origin. The beta curve of ep(z) and the boundary for the alpha curve
of ep(z) meet only at two points, the origin O and the point Q = (2xc, 2yc), where
O′ = (xc, yc). Hence in any case, ep(z) has two alpha curves, one starts from the
origin and the other which is symmetric to the former with respect to O′ starts
from the point Q. Both of alpha curves eventually tend to infinity.
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The beta curve of ep(z),

4a1xy + 2a2(x2 − y2) + b1y + b2x = 0

meets the coordinate axis at three points (0, 0), (0, b1
2a2

), (− b2
2a2

, 0). From the
above arguments, we can determine which part of the beta curve is the alpha
curve of the given function ep(z). If the function

A(x, y) := 2a1(x2 − y2)− 4a2xy + b1x− b2y (4)

has positive sign at (0, b1
2a2

) (or (− b2
2a2

, 0)), then the subset of beta curve starting

from O or Q containing (0, b1
2a2

) (or (− b2
2a2

, 0)) is the alpha curve of ep(z).

Lemma 5. Suppose that (x, y) and (x′, y′) are symmetric w.r.t O′ = (xc, yc).
Then

q(x̂, ŷ) := Re p(x+ iy)− Re p(x′ + iy′) = b1x̂− b2ŷ
where x̂ = x− xc, ŷ = y − yc.

Proof. Since

Re p(x+ iy) =Re p((x̂+ xc) + i(ŷ + yc))

=a1(x̂2 − ŷ2)− 2a2x̂ŷ +
b1
2
x̂− b2

2
ŷ +K,

we get

q(x̂, ŷ) = b1x̂− b2ŷ,

where K = c1 − 3a1(b
2
1−b

2
2)−6a2b1b2

16(a21+a
2
2)

. �

Let Ω be the set

Ω := {(x̂, ŷ) : q(x̂, ŷ) > 0} = {(x, y) : b1(x− xc)− b2(y − yc) > 0} (5)

in the plane and let L be the line

L : b1x̂− b2ŷ = 0. (6)

The beta curve passes through (− b2
2a2

, 0) and (0, b12a2
). So the line L is parallel

to the line passing through (− b2
2a2

, 0) and (0, b12a2
). And if (x̂, ŷ) ∈ Ω, then

(−x̂,−ŷ) ∈ Ωc.

3. Maximum curve of eaz
2+bz+c

We call the arm of the beta curve of ep(z) passing through the origin curve A
and the other arm curve B. We can determine the alpha curve by checking the
sign of A(x, y) at a proper point, where A(x, y) is the same function as in (4).

In any case, the alpha curve consist of two separated curves, one starts from
the origin and the other one starts from the point Q = (2xc, 2yc), where O′ =
(xc, yc). We divide the beta curve of ep(z) into four pieces by the origin and the
point Q. We call each of four pieces as follows:
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Aα: alpha curve originating from the origin (Aα ⊂ A)
Bα: alpha curve originating from the point Q (Bα ⊂ B)
Aβ : rest of curve after excluding Aα from A (includes the origin)
Bβ : rest of curve after excluding Bα from B (includes the point Q)

The curve Aα and Bα(Aβ and Bβ) are symmetric with respect to the center O′

of the beta curve.
From the definition of the beta curve, every point of the beta curve on the

circle |z| = r (r > 0) is a critical point of

Re p(reiθ), θ ∈ [0, 2π]

where r > 0 is fixed. And |f(z)| = eRe p(z) increases along the alpha curve Aα
and Bα, and |f(z)| decreases along the curve Aβ and Bβ as r = |z| grows.

Lemma 6. Suppose that P1 is a point on the curve Bα and P2 is the point that
is symmetric to P1 w.r.t O′. Then

OP1 > OP2.

Proof. The beta curve is rectangular hyperbola and two points O, P2 are an the
curve Aα, so ∠OO′P2 <

π
2 . And since O′P1 = O′P2, we have OP1 > OP2. �

Now we state and prove the main Theorem. Here we prove the case, all of
real and imaginary parts of a, b are positive. Other cases can be proved by slight
modifications.

The beta curve passes through the point (0, b12b2
) and since xc < 0,

A(0,
b1
2b2

) = 2(a21 + a22)
b1
a22
xc < 0.

If the curve A passes (0, b12b2
), then Aα is in the fourth quadrant. If the curve

A does not pass the point, then Bβ passes (0, b12b2
). So in any case Aα is in the

fourth quadrant. And the line L has positive slope, where L is the line as in (6).

Theorem 7. The maximum curve of ep(z) is Aα, the alpha curve originating
from the origin.

Proof. Let Cr be the circle |z| = r(r > 0). And suppose that Cr intersects with
Aα at zr. If the circle Cr meets the curve Bα at z′r, then it is enough to show
that |f(zr)| > |f(z′r)|, since the maximum curve is a subset of the alpha curve.
To show the curve Aα is the maximum curve, we consider two cases.

Case 1. yc > 0.
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In this case the line L, where L is the line as in (6), does not meet Aα and
each point on Aα belongs to

Ω = {(x, y) : (y − yc) <
b1
b2

(x− xc)}.

If r < OQ, then Cr does not meet Bα. Hence

max
|z|=r

|f(z)| = |f(zr)|.

If r ≥ OQ, then Cr intersects with Bα at one point, z′r. Since O ∈ Ω and
|z′r| ≥ OQ, Q ∈ Ωc and z′r ∈ Ωc. Let z′′r be a point that is symmetric to z′r w.r.t
O′. Then z′′r is on Aα and z′′r ∈ Ω. Since |z′′r | < |z′r| = |zr| by Lemma 6, we have

|Re(p(z′r))| < |Re(p(z′′r ))| < |Re(p(zr))|
and

max
|z|=r

|f(z)| = |f(zr)|.

Case 2. yc ≤ 0.
If Aα lies inside Ω, then it is the same case as in the above. Suppose that the

line L intersects with Aα at S. Let V be a vertex of the beta curve. From lines
of computations, we have

(2O′V )2 −OS2
=
b2(a1b1 + a2b2) + b1(a1b2 − a2b1)

4(a21 + a22)3/2
> 0.

The last inequality holds since yc ≤ 0. And since OS < 2O′V < d((0, 0), B), if
r ≤ OS, then Cr does not meet the curve Bα, where d((0, 0), B) is the distance
between the origin and the curve B.

If Cr does not meet Bα, then, we have

max
|z|=r

|f(z)| = |f(zr)|.

Suppose Cr intersects with Bα at z′r. Let z′′r be the point on Bα that is
symmetric to zr w.r.t O′. Since |zr| > OS, zr ∈ Ω and z′′r ∈ Ωc. And |zr| =
|z′r| < |z′′r | by Lemme 6. So we have

Re(p(z′r)) < Re(p(z′′r )) < Re(p(zr))

Hence

|f(z′r)| < |f(z′′r )| < |f(zr)|
and

max
|z|=r

|f(z)| = |f(zr)|.

This completes the proof. �

The minimum curve of f(z) is defined by the set of all z ∈ C such that

|z| = r, |f(z)| = min
|ζ|=r

|f(ζ)|, r ≥ 0.
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With similar arguments as in the proof of Theorem 7, we have the following
result.

Theorem 8. The minimum curve of ep(z) is Aβ, the beta curve originating from
the origin.
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