ON THE SHAPE OF MAXIMUM CURVE OF $e^{a z^{2}+b z+c}$

MIHWA KIM AND JEONG-HEON KIM*

Abstract

In this paper, we investigate the proper shape and location of the maximum curve of transcendental entire functions $e^{a z^{2}+b z+c}$. We show that the alpha curve of $e^{a z^{2}+b z+c}$ is a subset of a rectangular hyperbola, and the maximum curve is the connected set originating from the origin as a subset of the alpha curve.

AMS Mathematics Subject Classification : 30D20.
Key words and phrases : beta curve, alpha curve, maximum curve of an entire function

1. Intorduction

For an entire function $f(z)$, we define the maximum curve of $f(z)$ by the set of all $z \in \mathbb{C}$ such that

$$
|z|=r,|f(z)|=\max _{|\zeta|=r}|f(\zeta)|=M(r, f), \quad r \geq 0
$$

Our concerns are finding the proper shape and location of the maximum curve of the function $f(z)=e^{a z^{2}+b z+c}$.

We begin with two known results related to the maximum curve of $f(z)$. W. K. Hayman found the number of candidates for the maximum curve of $e^{p(z)}$ near the origin.

Theorem 1 ([1]). Suppose that

$$
f(z)=1+a_{k} z^{k}+\cdots, \quad\left(a_{k} \neq 0\right)
$$

is analytic at $z=0$. Then, for some $\epsilon>0$, the points z with $|z| \leq \epsilon$, such that $|z|=\rho,|f(z)|=M(\rho, f)$, form at most k regular arcs, which make angles of $\frac{2 p \pi}{k}$ with each other at $z=0$, where p is a positive integer.

[^0]If $p(z)$ is a polynomial of degree two, then we may write

$$
f(z)=e^{p(z)}=a_{0}+a_{k} z^{k}+\cdots, \quad(k=1 \text { or } 2)
$$

So the function $f(z)=e^{p(z)}$ has at most two maximum curves starting from the origin.

To state the second known result, we let

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}, \quad\left(a_{n} \neq 0, n \geq 1\right)
$$

where

$$
a_{k}=s_{k} e^{i \alpha_{k}}, z=r e^{i \theta}, \quad(k=0,1,2, \cdots, n)
$$

We write

$$
\tau_{j}=-\frac{\alpha_{n}}{n}+(2 j-1) \frac{\pi}{2 n} \text { and } L_{j}=\left\{r e^{i \tau_{j}}: r>0\right\}
$$

where $j=0,1,2, \cdots, 2 n-1$. We divide the complex plane into $2 n$ open sectors

$$
S_{j}:=\left\{z: \tau_{j}<\operatorname{Arg} z<\tau_{j+1}\right\}, \quad(j=0,1,2, \cdots, 2 n-1)
$$

sharing the same vertex at the origin.
From the following theorem, we can guess the location of the maximum curve of $e^{p(z)}$.

Theorem $2([2])$. The function $f(z)=e^{p(z)}$ has radial limits on each sector S_{j} :

$$
\lim _{\substack{|z|=r \rightarrow \infty \\
z \in S_{j}}}|f(z)|=\left\{\begin{array}{cc}
0 & \text { if } j \text { is odd, } \\
\infty & \text { if } j \text { is even } .
\end{array}\right.
$$

Furthermore, the limits are uniform on any closed subsector of S_{j}.
The above theorem says that radial limits tend to infinity on some sectors and that sectors are determined by the argument of the leading coefficient of $p(z)$. From Theorem 2, we may assume that maximum curves of $e^{p(z)}$ are located in some sectors $S_{2 j}$ for sufficiently large r.

Previous two theorems give us rough and limited information on the maximum curve of $e^{p(z)}$ near the origin and the infinity. In this paper we study entire shape and proper location of the maximum curve of $e^{p(z)}$, where $p(z)$ is a polynomial of degree two.

2. Beta curve and alpha curve of $e^{p(z)}$

For an entire function $f(z)$, we define a new function

$$
A(z)=z \frac{f^{\prime}(z)}{f(z)}
$$

as T. F. Tyler did.([3]) Using the polar form of the Cauchy-Riemann equations, we obtain

$$
A(z)=r \frac{\partial}{\partial r} \log \left|f\left(r e^{i \theta}\right)\right|-i \frac{\frac{\partial}{\partial \theta}\left|f\left(r e^{i \theta}\right)\right|}{\left|f\left(r e^{i \theta}\right)\right|}
$$

We follow Tyler's phrase again.
Definition 3. We call the curve where $\frac{\partial}{\partial \theta} \log \left|f\left(r e^{i \theta}\right)\right|=0$ the beta curve of $f(z)$, and those parts of the beta curve where $r \frac{\partial}{\partial r} \log \left|f\left(r e^{i \theta}\right)\right|$ is positive will be called the alpha curve of $f(z)$.

From the definition we know that the alpha curve is a subset of beta curve, and the maximum curve is a subset of alpha curve.

Since

$$
\frac{\partial}{\partial \theta}\left|f\left(r e^{i \theta}\right)\right|=\frac{\partial}{\partial \theta}\left[e^{\operatorname{Re} p\left(r e^{i \theta}\right)}\right]=\frac{\partial}{\partial \theta}\left[\operatorname{Re} p\left(r e^{i \theta}\right)\right] \cdot e^{\operatorname{Re} p\left(r e^{i \theta}\right)}
$$

and $e^{\operatorname{Re} p\left(r e^{i \theta}\right)} \neq 0$, the beta curve of $e^{p(z)}$ is the set of all points $z=r e^{i \theta}$ such that

$$
\frac{\partial}{\partial \theta}\left[\operatorname{Re} p\left(r e^{i \theta}\right)\right]=0
$$

We set

$$
\begin{aligned}
p(z) & =a z^{2}+b z+c \\
& =\left(a_{1}+a_{2} i\right) z^{2}+\left(b_{1}+b_{2} i\right) z+\left(c_{1}+c_{2} i\right)
\end{aligned}
$$

where $a \neq 0$ and $a_{j}, b_{j}, c_{j}(j=1,2)$ are real numbers.
Theorem 4. The beta curve of $f(z)=e^{p(z)}$ is a hyperbola.
Proof. Let $z=r e^{i \theta}=x+i y$. Then we have

$$
\begin{aligned}
\frac{\partial}{\partial \theta}\left[\operatorname{Re} p\left(r e^{i \theta}\right)\right]= & \frac{\partial}{\partial \theta}\left[a_{1} r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)-2 a_{2} r^{2} \cos \theta \sin \theta\right. \\
& \left.+b_{1} r \cos \theta-b_{2} r \sin \theta+c_{1}\right] \\
= & -2 a_{1} r^{2} \sin 2 \theta-2 a_{2} r^{2} \cos 2 \theta-b_{1} r \sin \theta-b_{2} r \cos \theta \\
= & -\left[4 a_{1} x y+2 a_{2}\left(x^{2}-y^{2}\right)+b_{1} y+b_{2} x\right]
\end{aligned}
$$

So the beta curve can be written as a quadratic equation

$$
\begin{equation*}
4 a_{1} x y+2 a_{2}\left(x^{2}-y^{2}\right)+b_{1} y+b_{2} x=0 \tag{1}
\end{equation*}
$$

Since we assumed $a=a_{1}+a_{2} i \neq 0$, the discriminant

$$
D=\left|\begin{array}{cc}
2 a_{2} & 2 a_{1} \\
2 a_{1} & -2 a_{2}
\end{array}\right|=-4\left(a_{1}^{2}+{a_{2}}^{2}\right)
$$

of the quadratic equation (1) always has negative value. Hence the beta curve of $f(z)=e^{p(z)}$ is a hyperbola.

Here we state some properties of the beta curve of $e^{p(z)}$. We denote the center of the beta curve by O^{\prime} in the plane. The coordinate of the center O^{\prime} is given
by

$$
O^{\prime}=\left(x_{c}, y_{c}\right)=\left(-\frac{a_{1} b_{1}+a_{2} b_{2}}{4\left(a_{1}^{2}+a_{2}^{2}\right)},-\frac{a_{1} b_{2}-a_{2} b_{1}}{4\left(a_{1}^{2}+a_{2}^{2}\right)}\right)
$$

And the beta curve of $e^{p(z)}$ is a rectangular(equilateral) hyperbola.

A quadratic equation

$$
A x^{2}+B x y+C y^{2}+D x+E y=0
$$

is said to be degenerated if it is a product of two linear equations. In this paper we do not consider the degenerated case which is relatively simple.

The alpha curve of $f(z)$ is a subset of the beta curve satisfying

$$
r \frac{\partial}{\partial r} \log \left|f\left(r e^{i \theta}\right)\right|>0
$$

In other words, the alpha curve of $f(z)$ is the set of all points $z=r e^{i \theta}$ such that

$$
\frac{\partial}{\partial \theta}\left|f\left(r e^{i \theta}\right)\right|=0 \text { and } r \frac{\partial}{\partial r} \log \left|f\left(r e^{i \theta}\right)\right|>0
$$

From Theorem 4, we knew that the beta curve of $e^{p(z)}$ is a hyperbola of the form

$$
4 a_{1} x y+2 a_{2}\left(x^{2}-y^{2}\right)+b_{1} y+b_{2} x=0
$$

And since

$$
\begin{aligned}
\log \left|f\left(r e^{i \theta}\right)\right| & =\log \left|e^{p\left(r e^{i \theta}\right)}\right|=\operatorname{Re} p\left(r e^{i \theta}\right) \\
& =a_{1} r^{2} \cos 2 \theta-a_{2} r^{2} \sin 2 \theta+b_{1} r \cos \theta-b_{2} r \sin \theta+c_{1}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
r \frac{\partial}{\partial r} \log \left|f\left(r e^{i \theta}\right)\right| & =2 a_{1} r^{2} \cos 2 \theta-2 a_{2} r^{2} \sin 2 \theta+b_{1} r \cos \theta-b_{2} r \sin \theta \\
& =2 a_{1}\left(x^{2}-y^{2}\right)-4 a_{2} x y+b_{1} x-b_{2} y
\end{aligned}
$$

Hence the alpha curve of $e^{p(z)}$ is a subset of the beta curve lying inside the region

$$
\begin{equation*}
2 a_{1}\left(x^{2}-y^{2}\right)-4 a_{2} x y+b_{1} x-b_{2} y>0 \tag{2}
\end{equation*}
$$

The boundary of the region (2),

$$
\begin{equation*}
r \frac{\partial}{\partial r} \operatorname{Re} p\left(r e^{i \theta}\right)=2 a_{1}\left(x^{2}-y^{2}\right)-4 a_{2} x y+b_{1} x-b_{2} y=0 \tag{3}
\end{equation*}
$$

is also a rectangular hyperbola. The beta curve of $e^{p(z)}$ and the boundary (3) of the region (2) share the same center $\left(x_{c}, y_{c}\right)$, and the hyperbola (3) also passes through the origin. The beta curve of $e^{p(z)}$ and the boundary for the alpha curve of $e^{p(z)}$ meet only at two points, the origin O and the point $Q=\left(2 x_{c}, 2 y_{c}\right)$, where $O^{\prime}=\left(x_{c}, y_{c}\right)$. Hence in any case, $e^{p(z)}$ has two alpha curves, one starts from the origin and the other which is symmetric to the former with respect to O^{\prime} starts from the point Q. Both of alpha curves eventually tend to infinity.

The beta curve of $e^{p(z)}$,

$$
4 a_{1} x y+2 a_{2}\left(x^{2}-y^{2}\right)+b_{1} y+b_{2} x=0
$$

meets the coordinate axis at three points $(0,0),\left(0, \frac{b_{1}}{2 a_{2}}\right),\left(-\frac{b_{2}}{2 a_{2}}, 0\right)$. From the above arguments, we can determine which part of the beta curve is the alpha curve of the given function $e^{p(z)}$. If the function

$$
\begin{equation*}
A(x, y):=2 a_{1}\left(x^{2}-y^{2}\right)-4 a_{2} x y+b_{1} x-b_{2} y \tag{4}
\end{equation*}
$$

has positive sign at $\left(0, \frac{b_{1}}{2 a_{2}}\right)$ (or $\left(-\frac{b_{2}}{2 a_{2}}, 0\right)$), then the subset of beta curve starting from O or Q containing $\left(0, \frac{b_{1}}{2 a_{2}}\right)$ (or $\left(-\frac{b_{2}}{2 a_{2}}, 0\right)$) is the alpha curve of $e^{p(z)}$.
Lemma 5. Suppose that (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are symmetric w.r.t $O^{\prime}=\left(x_{c}, y_{c}\right)$. Then

$$
q(\hat{x}, \hat{y}):=\operatorname{Re} p(x+i y)-\operatorname{Re} p\left(x^{\prime}+i y^{\prime}\right)=b_{1} \hat{x}-b_{2} \hat{y}
$$

where $\hat{x}=x-x_{c}, \hat{y}=y-y_{c}$.
Proof. Since

$$
\begin{aligned}
\operatorname{Re} p(x+i y) & =\operatorname{Re} p\left(\left(\hat{x}+x_{c}\right)+i\left(\hat{y}+y_{c}\right)\right) \\
& =a_{1}\left(\hat{x}^{2}-\hat{y}^{2}\right)-2 a_{2} \hat{x} \hat{y}+\frac{b_{1}}{2} \hat{x}-\frac{b_{2}}{2} \hat{y}+K
\end{aligned}
$$

we get

$$
q(\hat{x}, \hat{y})=b_{1} \hat{x}-b_{2} \hat{y}
$$

where $K=c_{1}-\frac{3 a_{1}\left(b_{1}^{2}-b_{2}^{2}\right)-6 a_{2} b_{1} b_{2}}{16\left(a_{1}^{2}+a_{2}^{2}\right)}$.
Let Ω be the set

$$
\begin{equation*}
\Omega:=\{(\hat{x}, \hat{y}): q(\hat{x}, \hat{y})>0\}=\left\{(x, y): b_{1}\left(x-x_{c}\right)-b_{2}\left(y-y_{c}\right)>0\right\} \tag{5}
\end{equation*}
$$

in the plane and let L be the line

$$
\begin{equation*}
L: b_{1} \hat{x}-b_{2} \hat{y}=0 \tag{6}
\end{equation*}
$$

The beta curve passes through $\left(-\frac{b_{2}}{2 a_{2}}, 0\right)$ and $\left(0, \frac{b_{1}}{2 a_{2}}\right)$. So the line L is parallel to the line passing through $\left(-\frac{b_{2}}{2 a_{2}}, 0\right)$ and $\left(0, \frac{b_{1}}{2 a_{2}}\right)$. And if $(\hat{x}, \hat{y}) \in \Omega$, then $(-\hat{x},-\hat{y}) \in \Omega^{c}$.

3. Maximum curve of $e^{a z^{2}+b z+c}$

We call the arm of the beta curve of $e^{p(z)}$ passing through the origin curve A and the other arm curve B. We can determine the alpha curve by checking the sign of $A(x, y)$ at a proper point, where $A(x, y)$ is the same function as in (4).

In any case, the alpha curve consist of two separated curves, one starts from the origin and the other one starts from the point $Q=\left(2 x_{c}, 2 y_{c}\right)$, where $O^{\prime}=$ $\left(x_{c}, y_{c}\right)$. We divide the beta curve of $e^{p(z)}$ into four pieces by the origin and the point Q. We call each of four pieces as follows:
A_{α} : alpha curve originating from the origin $\left(A_{\alpha} \subset A\right)$
B_{α} : alpha curve originating from the point $Q\left(B_{\alpha} \subset B\right)$
A_{β} : rest of curve after excluding A_{α} from A (includes the origin)
B_{β} : rest of curve after excluding B_{α} from B (includes the point Q)
The curve A_{α} and $B_{\alpha}\left(A_{\beta}\right.$ and $\left.B_{\beta}\right)$ are symmetric with respect to the center O^{\prime} of the beta curve.

From the definition of the beta curve, every point of the beta curve on the circle $|z|=r(r>0)$ is a critical point of

$$
\operatorname{Re} p\left(r e^{i \theta}\right), \quad \theta \in[0,2 \pi]
$$

where $r>0$ is fixed. And $|f(z)|=e^{\operatorname{Re} p(z)}$ increases along the alpha curve A_{α} and B_{α}, and $|f(z)|$ decreases along the curve A_{β} and B_{β} as $r=|z|$ grows.

Lemma 6. Suppose that P_{1} is a point on the curve B_{α} and P_{2} is the point that is symmetric to P_{1} w.r.t O^{\prime}. Then

$$
\overline{O P_{1}}>\overline{O P_{2}}
$$

Proof. The beta curve is rectangular hyperbola and two points O, P_{2} are an the curve A_{α}, so $\angle O O^{\prime} P_{2}<\frac{\pi}{2}$. And since $\overline{O^{\prime} P_{1}}=\overline{O^{\prime} P_{2}}$, we have $\overline{O P_{1}}>\overline{O P_{2}}$.

Now we state and prove the main Theorem. Here we prove the case, all of real and imaginary parts of a, b are positive. Other cases can be proved by slight modifications.

The beta curve passes through the point $\left(0, \frac{b_{1}}{2 b_{2}}\right)$ and since $x_{c}<0$,

$$
A\left(0, \frac{b_{1}}{2 b_{2}}\right)=2\left(a_{1}^{2}+a_{2}^{2}\right) \frac{b_{1}}{a_{2}^{2}} x_{c}<0 .
$$

If the curve A passes $\left(0, \frac{b_{1}}{2 b_{2}}\right)$, then A_{α} is in the fourth quadrant. If the curve A does not pass the point, then B_{β} passes $\left(0, \frac{b_{1}}{2 b_{2}}\right)$. So in any case A_{α} is in the fourth quadrant. And the line L has positive slope, where L is the line as in (6).

Theorem 7. The maximum curve of $e^{p(z)}$ is A_{α}, the alpha curve originating from the origin.

Proof. Let C_{r} be the circle $|z|=r(r>0)$. And suppose that C_{r} intersects with A_{α} at z_{r}. If the circle C_{r} meets the curve B_{α} at z_{r}^{\prime}, then it is enough to show that $\left|f\left(z_{r}\right)\right|>\left|f\left(z_{r}^{\prime}\right)\right|$, since the maximum curve is a subset of the alpha curve. To show the curve A_{α} is the maximum curve, we consider two cases.

Case 1. $y_{c}>0$.

In this case the line L, where L is the line as in (6), does not meet A_{α} and each point on A_{α} belongs to

$$
\Omega=\left\{(x, y):\left(y-y_{c}\right)<\frac{b_{1}}{b_{2}}\left(x-x_{c}\right)\right\}
$$

If $r<\overline{O Q}$, then C_{r} does not meet B_{α}. Hence

$$
\max _{|z|=r}|f(z)|=\left|f\left(z_{r}\right)\right| .
$$

If $r \geq \overline{O Q}$, then C_{r} intersects with B_{α} at one point, z_{r}^{\prime}. Since $O \in \Omega$ and $\left|z_{r}^{\prime}\right| \geq \overline{O Q}, Q \in \Omega^{c}$ and $z_{r}^{\prime} \in \Omega^{c}$. Let $z_{r}^{\prime \prime}$ be a point that is symmetric to z_{r}^{\prime} w.r.t O^{\prime}. Then $z_{r}^{\prime \prime}$ is on A_{α} and $z_{r}^{\prime \prime} \in \Omega$. Since $\left|z_{r}^{\prime \prime}\right|<\left|z_{r}^{\prime}\right|=\left|z_{r}\right|$ by Lemma 6 , we have

$$
\left|\operatorname{Re}\left(p\left(z_{r}^{\prime}\right)\right)\right|<\left|\operatorname{Re}\left(p\left(z_{r}^{\prime \prime}\right)\right)\right|<\left|\operatorname{Re}\left(p\left(z_{r}\right)\right)\right|
$$

and

$$
\max _{|z|=r}|f(z)|=\left|f\left(z_{r}\right)\right| .
$$

Case 2. $y_{c} \leq 0$.
If A_{α} lies inside Ω, then it is the same case as in the above. Suppose that the line L intersects with A_{α} at S. Let V be a vertex of the beta curve. From lines of computations, we have

$$
\left(2 \overline{O^{\prime} V}\right)^{2}-\overline{O S}^{2}=\frac{b_{2}\left(a_{1} b_{1}+a_{2} b_{2}\right)+b_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)}{4\left(a_{1}^{2}+a_{2}^{2}\right)^{3 / 2}}>0 .
$$

The last inequality holds since $y_{c} \leq 0$. And since $\overline{O S}<2 \overline{O^{\prime} V}<d((0,0), B)$, if $r \leq \overline{O S}$, then C_{r} does not meet the curve B_{α}, where $d((0,0), B)$ is the distance between the origin and the curve B.

If C_{r} does not meet B_{α}, then, we have

$$
\max _{|z|=r}|f(z)|=\left|f\left(z_{r}\right)\right| .
$$

Suppose C_{r} intersects with B_{α} at z_{r}^{\prime}. Let $z_{r}^{\prime \prime}$ be the point on B_{α} that is symmetric to z_{r} w.r.t O^{\prime}. Since $\left|z_{r}\right|>\overline{O S}, z_{r} \in \Omega$ and $z_{r}^{\prime \prime} \in \Omega^{c}$. And $\left|z_{r}\right|=$ $\left|z_{r}^{\prime}\right|<\left|z_{r}^{\prime \prime}\right|$ by Lemme 6 . So we have

$$
\operatorname{Re}\left(p\left(z_{r}^{\prime}\right)\right)<\operatorname{Re}\left(p\left(z_{r}^{\prime \prime}\right)\right)<\operatorname{Re}\left(p\left(z_{r}\right)\right)
$$

Hence

$$
\left|f\left(z_{r}^{\prime}\right)\right|<\left|f\left(z_{r}^{\prime \prime}\right)\right|<\left|f\left(z_{r}\right)\right|
$$

and

$$
\max _{|z|=r}|f(z)|=\left|f\left(z_{r}\right)\right|
$$

This completes the proof.
The minimum curve of $f(z)$ is defined by the set of all $z \in \mathbb{C}$ such that

$$
|z|=r,|f(z)|=\min _{|\zeta|=r}|f(\zeta)|, \quad r \geq 0
$$

With similar arguments as in the proof of Theorem 7, we have the following result.

Theorem 8. The minimum curve of $e^{p(z)}$ is A_{β}, the beta curve originating from the origin.

References

1. W.K. Haymann, A characterization of the maximal modulus of functions regular at the origin, J. Analyse Math 1, (1951), 135-154.
2. A.I. Markushevich(trans. and ed. by R. A. Silvermann), Theory of Functions of a Complex Variable, Chelsea, New York, 1977.
3. T.F. Tyler, Maximum curves and isolated points of entire functions, Proc. Amer. Math. Soc. 128 no 9, (2000), 2561-2565.

Mihwa Kim received her Ph.D. at Soongsil University, Seoul, Korea. She is an invited professor at Soongsil University.
Department of Mathematics, Soongsil University, Seoul, 06978, Korea.
e-mail: fortune_0124@ssu.ac.kr
Jeong-Heon Kim received his Ph.D. at University of Illinois at Urbana-Champaign, USA. He is a professor at Soongsil University since 2003.
Department of Mathematics, Soongsil University, Seoul, 06978, Korea.
e-mail: jkim@ssu.ac.kr

[^0]: Received August 8, 2016. Revised October 31, 2016. Accepted November 3, 2016. * Corresponding author.
 (c) 2017 Korean SIGCAM and KSCAM.

