• 제목/요약/키워드: Hyper-Eutectic Al-Si Alloy

검색결과 12건 처리시간 0.031초

A319 알루미늄 합금 표면에 Al-36%Si 합금분말의 레이저 클래딩에 의한 내마모성 향상 (Laser Cladding with Al-36%Si Powder Paste on A319 Al Alloy Surface to Improve Wear Resistance)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제35권2호
    • /
    • pp.58-62
    • /
    • 2017
  • A319 aluminum alloy containing 6.5% Si and 3.5% Cu as major alloying elements has been widely used in machinery parts because of its excellent castability and crack resistance. However it needs more wear resistance to extend its usage to the severe wear environments. It has been known that hyper-eutectic Al-Si alloy having more than 12.6% Si contains pro-eutectic Si particles, which give better wear resistance and lubrication characteristics than hypo-eutectic Al-Si alloy like A319 alloy. In this study, it was tried to clad hyper-eutectic Al-Si alloy on the surface of A319 alloy. In the experiments, Al-36%Si alloy powder was mixed with organic binder to make a fluidic paste. The paste was screen-printed on the A319 alloy surface, melted by pulsed Nd:YAG laser and alloyed with the A319 base alloy. As experimental parameters, the average laser power was changed to 111 W, 202 W and 280 W. With increasing the average laser power, the melting depth was changed to $142{\mu}m$, $205{\mu}m$ and $245{\mu}m$, and the dilution rate to 67.2 %, 72.4 % and 75.7 %, and the Si content in the cladding layer to 16.2 %, 14.6 % and 13.7 %, respectively. The cross-section of the cladding layer showed very fine eutectic microstructure even though it was hyper-eutectic Al-Si alloy. This seems to be due to the rapid solidification of the melted spot by single laser pulse. The average hardness for the three cladding layers was HV175, which was much higher than HV96 of A319 base alloy. From the block-on-roll wear tests, A319 alloy had a wear loss of 5.8 mg, but the three cladding layers had an average wear loss of 3.5 mg, which meant that an increase of 40 % in wear resistance was obtained by laser cladding.

과공정 Al-15wt.%Si 압출재와 회주철의 미세조직 및 엔진 오일 환경에서의 마모 특성 (Microstructure and Wear Properties in an Engine Oil Environment of Extruded Hyper-eutectic Al-15wt.%Si Alloy and Gray Cast Iron)

  • 강연지;김종호;황종일;이기안
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.339-346
    • /
    • 2018
  • This study investigated the microstructure and wear properties of extruded hyper-eutectic Al-Si (15wt.%) alloy in an engine oil environment. The wear mechanism of the material was also analyzed and compared to conventional gray cast iron. In microstructural observation results of Al-15wt.%Si alloy, primary Si phase ($45.3{\mu}m$) and eutectic Si phase ($3.1{\mu}m$) were found in the matrix, and the precipitations of $Mg_2Si({\beta}^{\prime})$, $Al_2Cu({\theta}^{\prime})$ and $Al_6(Mn,Fe)$ were also detected. In the case of gray cast iron, ferrite and pearlite were observed. It was also observed that flake graphite ($20-130{\mu}m$) were randomly distributed. Wear rates were lower in the Al-Si alloy as compared to those of gray cast iron in all load conditions, confirming the outstanding wear resistance of Al-15wt.%Si alloy in engine oil environment. In the $4kg_f$ condition, the wear rate of gray cast iron was $6.0{\times}10^{-5}$ and that of Al-Si measured $0.8{\times}10^{-5}$. The microstructures after wear of the two materials were analyzed using scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The primary Si and eutectic Si of Al-Si alloy effectively mitigated the abrasive wear, and the Al matrix effectively endured to accept a significant amount of plastic deformation caused by wear.

자동차 부품용 과공정 알루미늄 합금의 기계적 특성 (Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts)

  • 배철홍;김종명
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

과공정 Al-Si 합금의 마모 특성에 미치는 잔류응력의 영향에 관한 연구 (A Study on the Relationship between Residual Stress and Wear Peroperty in Hypereutectic Al-Si Alloys)

  • 김헌주;김창규
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.89-96
    • /
    • 2000
  • The effects of modification processing on the refinement of primary Si and the wear behavior of hyper-eutectic Al-Si alloys have been mainly investigated. Refining effects of primary Si in Al-17%Si alloy was more efficient than that of B.390 alloy. Optimum condition of getting the finest primary Si microstructure was when AlCuP modifier is added into the melt at $750^{\circ}C$ and held it at $700^{\circ}C$ for 30 minutes. Wear loss in the specimens of as-cast condition decreases as the size of primary Si decreases, in the order of B.390 alloy, B.390 alloy with AlCuP addition, Al-17%Si alloy and Al-17%Si alloy with AlCuP addition. Wear loss in the aged condition of Al-17%Si alloy, B.390 alloy and B.390 alloy with AlCuP addition decreased due to the increase of compressive residual stress in the matrix by the aging treatment. While, wear loss increased in the aged specimens of Al-17%Si alloy with AlCuP addition and Hepworth addition in which compressive residual stress decreases by the aging treatment. Therefore, it is assumed that higher compressive residual stress in the matrix can reduce the wear loss in composite materials such as hyper-eutectic Al-Si alloys.

  • PDF

과공정 Al-Si합금의 원심주조시 용탕온도와 금형회전수가 경사기능 조직에 미치는 영향에 대한 해석적 고찰 (A Numerical Study of the Effect of Casting Temperature and Rotational Frequency of Mold on the Functionally Graded Microstructure in Centrifugal Casting of Hyper-eutectic Al-Si Alloy)

  • 박정욱;김헌주
    • 한국주조공학회지
    • /
    • 제29권2호
    • /
    • pp.78-85
    • /
    • 2009
  • Functionally graded microstructure of centrifugal cast Al-Si alloy, especially distribution of primary Si particles according to the changes of melt pouring temperature and rotation frequency was investigated by numerical simulation. Moving velocity of Si particles increased as the melt pouring temperature and rotational frequency of mold increased. Therefore, segregation tendency of primary Si particles toward inner side of cylindrical sample increased as the melt pouring temperature and rotational frequency of mold increased. Rich distribution region of particles was located at 0.9, 0.7, 0.4 mm from inner surface of cylindrical sample under the centrifugal cast condition of $750^{\circ}C$ melt pouring temperature and 1500, 2000 and 2500 rpm mold rotational frequencies, respectively, by numerical simulation.

흑연(黑鉛)을 분산(分散)시킨 Al-Si 합금(合金)의 유동성(流動性)에 관(關)한 연구(硏究) (A study on the fluidity of graphite dispersed Al-Si alloy)

  • 권혁무;신세균;장충근;최승평
    • 한국주조공학회지
    • /
    • 제7권1호
    • /
    • pp.38-44
    • /
    • 1987
  • The spiral fluidity of graphite-dispersed Al-Si alloys has been investigated as a function of contents of Si and graphite, and of particle size of graphite. The dispersion of uncoated graphite is carred out by the vortex process of preheat-treated graphite into molten metal. The fluidity of hyper-eutectic Al-Si alloys is observed to the better than that of hypo-eutectic ones. In the case of graphite-dispersed Al-Si alloys they fluidity increases in hypo-eutectic alloys and decreases in hyper-eutectic ones in comparison with that of the corresponding undispersed alloys. Fluidity decreases with an increase of amount of dispersed graphite particles and inversely proportional to the total surface area of graphite particles.

  • PDF

과공정 Al-Si 합금의 내마모성 연구 (A Study on the Wear Resistant Property in Hyper-eutectic Al-Si Alloy)

  • 김헌주;정운재
    • 한국주조공학회지
    • /
    • 제13권6호
    • /
    • pp.563-573
    • /
    • 1993
  • The wear resistance of Hyper-eutectic Al-Si alloy, have recently been noticed as a new automobile material, was investigated. For the purpose of developing wear resistant Al-Si alloy, some factors which attribute to wear resistance are examined as follows; refinement of primary Si particle during solidification, and effect of refinement on wear resistance and other mechanical properties. The most effective refinement was accomplished by adding both NaF and S, and this improve wear-resistance in abrasive wear type. The wear losses of specimens cast in metal mold were ruduced to 80% of those in sand mold. T6 heat treatment increases hardness, which resulted in reduction of wear loss about $3{\sim}18%$.

  • PDF

수평연속주조에 의한 과공정 Al-Si합금 제조에 관한 연구 (A Study on Manufacturing Process of Hypereutectic Al-Si Alloy via Horizontal Continuous Casting)

  • 류봉선;지무성;박원욱
    • 한국주조공학회지
    • /
    • 제16권2호
    • /
    • pp.116-123
    • /
    • 1996
  • The equipment for the horizontal continuous casting was built to produce hyper-eutectic Al-Si bars with a small cross-section of 25mm in diameter. The manufacturing processes including withdrawal cycle and secondary cooling methods were modified to refine the primary and the eutectic Si. The longitudinal casting speeds varied over the ranges of 670-1100mm/min for pure Al, and 200-350mm/min for Al-17wt%Si alloy. Due to the difference of cooling rate in the mould, microstructural asymmetry between the lower and the upper part of bar was observed. Thus, manufacturing processes such as cooling and withdrawal method were optimally combinated to get the homogeneous cast structure. With the increase of casting speed, the primary Si size was refined down to $30{\mu}m$ near the surface, and $80{\mu}m$ in the center of the bar.

  • PDF

과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향 (Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys)

  • 김철현;주대헌;김명호;윤의박;윤우영;김권희
    • 한국주조공학회지
    • /
    • 제23권4호
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

수평연속주조한 과공정 Al-Si합금 소경봉의 미세조직 및 기계적성질 (Microstructure and Mechanical Properties of Hypereutectic Al-Si Alloy Bars Processed via Horizontal Continuous Casting)

  • 김완철;박지하;류봉선;박원욱
    • 한국주조공학회지
    • /
    • 제17권6호
    • /
    • pp.585-591
    • /
    • 1997
  • Hyper-eutectic Al-17.5wt%Si alloy bars of 25 mm in diameter were produced by horizontal continuous casting process. Effect of both casting speed and primary Si refiner (AlCuP) on microstructure and mechanical properties of the alloy have been investigated. With increasing a weight fraction of AlCuP, the average primary Si size decreased down to $20 {\mu}m$. On the contrary, there was no notable changes of microstructure and primary Si size according to the casting speed in the experimental range of this study, indicating that the cooling rate should be increased to optimize and refine microstructure and primary Si size. The experimental results including hardness, tensile strength and wear resistance tests of the processed alloy bars showed a good possibility to develop the high performance wear resistant Al-Si alloy.

  • PDF