• 제목/요약/키워드: Hygroscopic

검색결과 176건 처리시간 0.019초

An Analysis of the Hygroscopic Aerosol Behavior Using the Moving Sectional Method (변동구간분할법을 이용한 흡습성 에어로졸의 거동 해석)

  • Park, J.W.;Kim, H.D.
    • Journal of ILASS-Korea
    • /
    • 제3권4호
    • /
    • pp.25-34
    • /
    • 1998
  • Hygroscopic aerosols can rapidly grow in size by steam condensation even under subsaturated steam conditions. Much efforts have been made to handle this process, but there have been computational difficulties in handling the condensational growth of hygroscopic aerosols by contentional methods. A recently released computer code, CONTAIN 2.0, employs a new technique called Moving Sectional Method(MSM) to handle the growth of hygroscopic aerosols. As a part of the model verification efforts, we have used the code to simulate the VANAM M3U hygroscopic aerosol experiment. We assess the accuracies of the new MSM and the conventional Fixed Sectional Method(ESM) based on the simulation results. Also presented are discussions about the robustness of the MSM.

  • PDF

The Influence of Aerosol Source Region on Size-resolved Hygroscopicity During the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) Campaign

  • Lee, Yong-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제22권E1호
    • /
    • pp.9-18
    • /
    • 2006
  • Aerosol hygroscopic properties were measured by a tandem differential mobility analyzer (TDMA) system during the Aerosol Characterization Experiment (ACE)-Asia campaign from 31 March to 1 May 2001. Two high flow differential mobility analyzers (DMAs) were used to maximize the count rate on board the Center for Interdisciplinary Remotely Piloted Aircraft (CIRPAS) Twin Otter aircraft. Hygroscopic growth factor distributions of particles having initial dry nanoparticle diameters of 0.040, 0.059, 0.086, 0.126, 0.186, 0.273, 0.400, and $0.586{\mu}m$ were measured during 19 research flights. Data collected during 12 of those flights were used to investigate aerosol mixing state and the influence of aerosol source region on size-resolved hygroscopicity. The uniformity in size-resolved hygroscopicity was quantified to facilitate comparison between measurements made in different air masses. Hygroscopic growth factors are strongly dependent on source region and sizes. Mean hygroscopic growth factors were observed to be greatest when the air mass origin was from the south. The mean growth factors for continental sources decreased with initial size from 1.47 to 1.27 for $0.040{\mu}m\;and\;0.586{\mu}m$, but increased with initial size from 1.44 to 1.8 for $0.040{\mu}m\;and\;0.400{\mu}m$ dry diameters for marine sources.

Hygroscopic Characteristics of TiO$_2$Thin Films Deposited by R.F Sputter (R.F 스퍼트링에 의한 TiO$_2$박막의 감습특성)

  • 이수정;이성필;박재윤;박상현;고희석;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.328-331
    • /
    • 1995
  • TiO$_2$thin films for humidity sensors have been deposited by RF magnetron sputter and hygroscopic characteristics were investigated. Grain diameter of thin films were increased and hygroscopic characteristics were good as discharge power. Hygroscopic characteristics of thin films heated for 15 min at 500$^{\circ}C$ were better and more linear than that at 400$^{\circ}C$ and were unchanged as Ar flow rate.

  • PDF

The effect of steam condensation on the behavior of an hygroscopic aerosol (흡습성 에어로졸의 거동에 미치는 수증기 응축의 영향)

  • Park, J.W.
    • Journal of ILASS-Korea
    • /
    • 제3권3호
    • /
    • pp.14-22
    • /
    • 1998
  • The growth by steam condensation of an hygroscopic aerosol is investigated using the condensation rate model which has been derived from the mass and heat transfer equations. The present model accounts for both the solute and Kelvin effects. When the hygroscopicity is considered, condensation can occur on hygroscopic seed particles even under subsaturated steam conditions. This study focuses on the effect of hygroscopicity on the evolution of the particle size distribution and decay of the total aerosol concentration. It is found that hygroscopicity causes the particle size distribution to rapidly move upward even in a very short time, resulting in substantially higher decay of the total aerosol concentration than the case without considering hygroscopicity.

  • PDF

Stress Analysis for Bendable Electronic Module Under Thermal-Hygroscopic Complex Loads (열·습도 복합하중에서의 유연성 전자모듈에 대한 구조해석)

  • Han, Changwoon;Oh, Chulmin;Hong, Wonsik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제37권5호
    • /
    • pp.619-624
    • /
    • 2013
  • A bendable electronic module is developed. In this module, thin silicon electronic chips are embedded in a polymer-based encapsulating adhesive between flexible copper-clad polyimide layers. During the qualification test of a harshly thermal-hygroscopic complex loading condition, delaminations occur inside the module layers. A finite element model is developed for the module. To investigate the effect of hygroscopic stress on delamination, the results of the thermal and thermal-hygroscopic loads are compared. The analysis results reveal that the hygroscopic effect more strongly affects delamination than does the thermal effect. The potential failure mechanisms of the module are investigated based on the stress analysis.

Development of a hygroscopic polymer-coated QCM humidity sensor and its characteristics (감습 고분자막이 코팅된 수정미소저울 습도센서 제작 및 특성연구)

  • Kwon, Su-Yong;Kim, Jong-Chul;Choi, Byung-Il;Nham, Hyun-Soo
    • Journal of Sensor Science and Technology
    • /
    • 제14권6호
    • /
    • pp.395-401
    • /
    • 2005
  • A highly stable quartz crystal microbalance (QCM) that showed a stability of frequencies and exhibited a very low noise level has been developed. The long-term drift was <0.05 Hz/h over a period of 10 h, and the short-term rms (root mean square) noise was <0.015 Hz. Our QCM sensor was used as a humidity sensor employing a poly(methyl methacrylate) (PMMA) polymer film as a hygroscopic layer, which showed good characteristics in the relative humidity (RH) range of $2{\sim}90%$ RH. Comparing the characteristics of the QCM sensor with those of other types of humidity sensors employing PMMA film as a hygroscopic layer, and with other QCM sensors employing other hygroscopic layers is represented.

Improved Micrometric Properties of Pyridostigmine Bromide, a Highly Hygroscopic Drug, through Microenccapsulation (고인습성 약물인 피리도스티그민의 마이크로캅셀화에 의한 분체 특성의 개선)

  • Kim, Dae-Suk;Kim, In-Wha;Chung, Suk-Jae;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권1호
    • /
    • pp.41-45
    • /
    • 2002
  • The purpose of this study is to microencapsulate a highly hygroscopic drug, pyridostigmine bromide (PB), with a waterproof wall material, in order to increase the flowability of the drug particles. Polyvinylacetaldiethylaminoacetate (AEA), Eugragit E and Eugragit RS were examined as the wall materials. Microcapsules containing PB were prepared by the evaporation technique in an acetone/liquid paraffin system using aluminum tristearate as a core material, and evaluated for drug encapsulation efficiency, surface morphology, particle size and drug dissolution. The encapsulation of PB in the wall material was almost complete. Among the wall materials examined, AEA exhibited the most excellency in shape, surface texture, flowability, size distribution of microcapsules. Above results suggest that AEA would be a potential wall material for microcapsulation of highly hygroscopic drugs, such as PB. Through microencapsulation with AEA, inconvenience of handling of PB powders encountered in the process of weighing and packing the powders to tableting die or capsule body could be greatly improved.

Numerical Analysis and Experimental Measurement of Hygroscopic Warping Effects for Cellulose Fibres (셀룰로스 복합소재에서의 수분에 의한 뒤틀림 변형효과를 위한 수치해석적 실험적 연구)

  • Kim, Byeong-Sam;Kim, Ki-Jun
    • Journal of the Korean Society of Safety
    • /
    • 제19권1호
    • /
    • pp.117-123
    • /
    • 2004
  • The prediction to the hydroscopic moisture warping behaviors is analyzed for cellulose-based laminates using a numerical method base on a modified classical laminate(MCL) theory for hygroscopic moisture deformations with cycling testing data. The experimental measurement of the interferometric hygroscopic warping effects, moisture generator, and curvature of cellulose reinforced epoxy laminates is studied under cyclic environmental conditions using a Moire interferometer coupled. Accurate determination of curvatures provides a description of dimensional stability evolution; the tools for validation of computational internal stress and for the warpage prediction in model safety.

An Experimental Study on Non-hygroscopic Propertiy of PAG and POE Oils for a $CO_2$ Refrigeration System ($CO_2$ 냉동시스템용 PAG오일과 POE오일의 항흡습성에 관한 실험적 연구)

  • Lee, Sung-Kwang;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제20권6호
    • /
    • pp.388-393
    • /
    • 2008
  • This study has been conducted to select the suitable refrigeration oil for a $CO_2$ refrigeration system. Non-hygroscopic property of refrigeration oils is one of the most important properties for refrigeration oils. PAG and POE oils are considered as test oils in this study. Transient variation of water content of PAG and POE oils was measured for 3 different vessels in the environmental conditions, such as in the range of temperature $25^{\circ}C$ to $40^{\circ}C$ and relative humidity 40% to 85%. The results obtained that water content of both POE and PAG is increased with an increase in the contact area with ambient for 3 different vessels. It is also found that water content of both POE and PAG is increased as the ambient temperature and relative humidity is increased. Non-hygroscopic property of POE oil is found to be much superior than that of PAG oil.

Hygroscopic Property of Heat Treated Yellow Poplar (Liriodendron tulipifera) Wood

  • CHANG, Yoon-Seong;HAN, Yeonjung;EOM, Chang-Deuk;CHUN, Sangjin;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권6호
    • /
    • pp.761-769
    • /
    • 2019
  • In modern societies, people spend most of their time indoors and the temperature and humidity controlled by electrical appliances have a considerable effect on their emotions and health. However, improper operation of the artificial facilities frequently creates substances that are harmful to our body. The importance of controlling the natural humidity of interior materials has therefore attracted significant attention. This study was aimed at quantifying the hygroscopic property of some interior finishing wooden materials. Dried and heat-treated yellow poplar (Liriodendron tulipifera) lumbers, oriented strand board, and plywood were selected for this experiment. The moisture adsorption and desorption rates of wooden materials were measured (ISO 24353). Furthermore, the effects of morphological, physical and chemical factors, such as surface microstructure, roughness, and functional groups, on the hygroscopicity were evaluated. The results of this study should contribute to improved accuracy of hygroscopic-property assessments performed on wooden interior materials.