• 제목/요약/키워드: Hyesung

검색결과 96건 처리시간 0.03초

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS

  • KANG HYESUNG;JONES T. W.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.405-412
    • /
    • 2004
  • Cosmological shocks form as an inevitable consequence of gravitational collapse during the large scale structure formation and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration (DSA). We have calculated the evolution of CR modified shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of DSA in 1D quasi-parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc $\ge$ 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that $10^{-4} - 10^{-3}$ of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The CR acceleration efficiency increases with shock Mach number, but it asymptotes to ${\~}50\%$ in high Mach number shocks, regardless of the injection rate and upstream CR pressure. On the other hand, in moderate strength shocks ($M_s {\le} 5$), the pre-existing CRs increase the overall CR energy. We conclude that the CR acceleration at cosmological shocks is efficient enough to lead to significant nonlinear modifications to the shock structures.

Synchrotron Emission Modeling of Radio Relics in the Cluster Outskirts

  • Kang, Hyesung;Ryu, Dongsu
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.30.1-30.1
    • /
    • 2015
  • Radio relics are diffuse radio sources found in the outskirts of galaxy clusters and they are thought to trace synchrotron-emitting relativistic electrons accelerated at shocks. We explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301 impinges on a magnetized cloud containing fossil relativistic electrons. This model is expected to explain some observed characteristics of giant radio relics such as the relative rareness, uniform surface brightness along the length of thin arc-like radio structure, and spectral curvature in the integrated radio spectrum. We find that the observed surface brightness profile of the Sausage relic can be explained reasonably well by shocks with speed $u_s{\sim}3{\times}10^3km/s$ and sonic Mach number $M_s{\sim}3$. These shocks also produce curved radio spectra that steepen gradually over $(0.1-10){\nu}_{br}$ with a break frequency ${\nu}_{br}{\sim}1GHz$, if the duration of electron acceleration is ~60-80 Myr. However, the abrupt increase in the spectral index above ~1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with the Lorentz factor, ${\gamma}_e$ > $10^4$.

  • PDF

CLOSE ENCOUNTERS BETWEEN A NEUTRON STAR AND A MAIN-SEQUENCE STAR

  • LEE HYUNG MOK;KIM SUNG S.;KANG HYESUNG
    • 천문학회지
    • /
    • 제29권1호
    • /
    • pp.19-30
    • /
    • 1996
  • We have examined consequences of strong tidal encounters between a neutron star and a normal star using SPH as a possible formation mechanism of isolated recycled pulsars in globular clusters. We have made a number of SPH simulations for close encounters between a main-sequence star of mass ranging from 0.2 to 0.7 $M_\bigodot$ represented by an n=3/2 poly trope and a neutron star represented by a point mass. The outcomes of the first encounters are found to be dependent only on the dimensionless parameter $\eta'{\equiv}(m/(m+ M))^{1/2}(\gamma_{min}/R_{MS})^{3/2}(m/M)^{{1/6)}$, where m and M are the mass of the main-sequence star and the neutron star, respectively, $\gamma_{min}$ the minimum separation between two stars, and $R_{MS}$ the size of the main-sequence star. The material from the (at least partially) disrupted star forms a disk around the neutron star. If all material in the disk is to be acctreted onto the neutron star's surface, the mass of the disk is enough to spin up the neutron star to spin period of 1 ms.

  • PDF

Acceleration of Cosmic Ray Electrons at Weak Shocks in Galaxy Clusters

  • Kang, Hyesung;Ryu, Dongsu;Jones, T.W.
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.69.1-69.1
    • /
    • 2017
  • According to structure formation simulations, weak shocks with typical Mach number, M<3, are expected to form in merging galaxy clusters. The presence of such shocks has been indicated by X-ray and radio observations of many merging clusters. In particular, diffuse radio sources known as radio relics could be explained by synchrotron-emitting electrons accelerated via diffusive shock acceleration (Fermi I) at quasi-perpendicular shocks. Here we also consider possible roles of stochastic acceleration (Fermi II) by compressive MHD turbulence downstream of the shock. Then we explore a puzzling discrepancy that for some radio relics, the shock Mach number inferred from the radio spectral index is substantially larger than that estimated from X-ray observations. This problem could be understood, if shock surfaces associated with radio relics consist of multiple shocks with different strengths. In that case, X-ray observations tend to pick up the part of shocks with lower Mach numbers and higher kinetic energy flux, while radio emissions come preferentially from the part of shocks with higher Mach numbers and higher cosmic ray (CR) production. We also show that the Fermi I reacceleration model with preexisting fossil electrons supplemented by Fermi II acceleration due to postshock turbulence could reproduce observed profiles of radio flux densities and integrated radio spectra of two giant radio relics. This study demonstrates the CR electrons can be accelerated at collisionless shocks in galaxy clusters just like supernova remnant shock in the interstellar medium and interplanetary shocks in the solar wind.

  • PDF

SEMI-ANALYTIC MODELS FOR ELECTRON ACCELERATION IN WEAK ICM SHOCKS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제53권3호
    • /
    • pp.59-67
    • /
    • 2020
  • We propose semi-analytic models for the electron momentum distribution in weak shocks that accounts for both in situ acceleration and re-acceleration through diffusive shock acceleration (DSA). In the former case, a small fraction of incoming electrons is assumed to be reflected at the shock ramp and pre-accelerated to the so-called injection momentum, pinj, above which particles can diffuse across the shock transition and participate in the DSA process. This leads to the DSA power-law distribution extending from the smallest momentum of reflected electrons, pref, all the way to the cutoff momentum, peq, constrained by radiative cooling. In the latter case, fossil electrons, specified by a power-law spectrum with a cutoff, are assumed to be re-accelerated from pref up to peq via DSA. We show that, in the in situ acceleration model, the amplitude of radio synchrotron emission depends strongly on the shock Mach number, whereas it varies rather weakly in the re-acceleration model. Considering the rather turbulent nature of shocks in the intracluster medium, such extreme dependence for the in situ acceleration might not be compatible with the relatively smooth surface brightness of observed radio relics.

RE-ACCELERATION MODEL FOR THE 'SAUSAGE' RADIO RELIC

  • KANG, HYESUNG
    • 천문학회지
    • /
    • 제49권4호
    • /
    • pp.145-155
    • /
    • 2016
  • The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock. However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, Mradio ≈ 4.6, while the Mach number estimated from X-ray observations, MX−ray ≈ 2.7. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of Ms ≈ 3 sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, s ≈ 4.1, and the cutoff Lorentz factor, γe,c ≈ 3−5×104, can reproduce reasonably well the observed spatial profiles of radio fluxes and integrated radio spectrum of the Sausage relic. The possible origins of such relativistic electrons in the intracluster medium remain to be investigated further.

THE CONTRIBUTION OF STELLAR WINDS TO COSMIC RAY PRODUCTION

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • 천문학회지
    • /
    • 제51권2호
    • /
    • pp.37-48
    • /
    • 2018
  • Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about ${\mathcal{L}}_w{\approx}1.1{\times}10^{41}erg\;s^{-1}$, which is about 1/4 of the power of supernova explosions, ${\mathcal{L}}_{SN}{\approx}4.8{\times}10^{41}erg\;s^{-1}$. If we assume that ~ 1 - 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

Properties of Merger-Driven Shocks in Clusters of Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.35.1-35.1
    • /
    • 2018
  • Shock waves have been observed in the outskirts of galaxy clusters. They are commonly interpreted as being driven by mergers of sub-clumps, so are called "merger shocks". We here report a study of the properties of merger shocks in merging galaxy clusters with cosmological hydrodynamic simulations. As a representative case, we describe the case where sub-clusters with mass ratio ~ 2 go through an almost head-on, binary-like merger. Because of the turbulent nature of hierarchical clustering, shock surfaces are not uniform, but composed of parts with different Mach numbers. As merger shocks expand from the core to the outskirts, the average Mach number, < $M_s$ >, increases. The shocks propagating along the merger axis could be observed as X-ray shocks and/or radio relics. The kinetic energy through the shocks peaks at ~ 1 Gyr after shock launching, or at ~ 1 - 2 Mpc from the core. The most energetic shocks are found to have the kinetic-energy weighted Mach number, < $M_s$ > $_{\phi}{\simeq}2-3$, and the CR-energy weighted Mach number, < $M_s$ > $_{CR}{\simeq}3-4$. We then discuss the observational implications of our results.

  • PDF

교대근무자의 카페인 섭취가 수면의 질에 미치는 영향 (Effect of Ingested Caffeine on the Sleep Quality among Shift Workers)

  • 김혜성;이종은
    • 한국직업건강간호학회지
    • /
    • 제29권4호
    • /
    • pp.306-315
    • /
    • 2020
  • Purpose: This study was conducted to identify the effects of caffeine intake by shift workers on sleep, considering various variable related to the sleep health of shift workers. Methods: A descriptive survey study was conducted with 128 employees who worked shifts. Respondents were surveyed on their of caffeine intake behavior, schedule type, quality of sleep, health promotion behavior, and occupational stress. Differences in their quality of sleep were assessed using the t-test and analysis of variance, while factors influencing the effect of caffeine intake on the quality of sleep were analyzed using hierarchical logistic regression. Results: The average Pittsburgh Sleep Index, Korean Version score of those surveyed was 7.3±3.25, indicating that their quality of sleep was low. On the other hand, their aveage daily intake of caffeine was 1.6±0.99 cups (1 cup =150 mL) and 116.4±77.58 mg/dL of caffeine. When the various variables that could have affected the quality of sleep were corrected, an increase in the amount of caffeine consumed was found to lead to a decrease in the quality of sleep (p=.015). Conclusion: Caffeine intake by shift workers has a significant bearing on their quality of sleep; therefore, such intake should be adjusted to improve their sleep health.

인체부위 인식을 통한 깊이 카메라 기반의 자전거 피팅 시스템 개발 (Development of a Bicycle Fitting System Based on Depth Camera through Body Part Recognition)

  • 전혜성;이진원;양정삼
    • 한국CDE학회논문집
    • /
    • 제20권4호
    • /
    • pp.375-384
    • /
    • 2015
  • Recently, there has been a gradual increase in the number of people who are interested in cycling, leading to an increasing number of cycling equipment consumers. However, many bicyclists get hurt because of their lack of knowledge about the right size of bicycle for their body. Although it is necessary for a rider to fit their bicycle to prevent injury, they reject a fitting service because of the long hours and high cost. In this study, we propose a bicycle fitting system that uses a depth camera to improve the limitations of existing manual fitting systems. With the defined formula, the system calculates the size of the bicycle using body image information extracted by a depth camera and visualizes a customized bicycle for a specific consumer. This system will not only save the customer time and money, but will prevent injury from the use of a bicycle that does not fit.