• 제목/요약/키워드: Hyesung

검색결과 95건 처리시간 0.02초

A New Code for Relativistic Hydrodynamics

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.55.1-55.1
    • /
    • 2020
  • In an attempt to investigate the nonlinear dynamics such as shock, shear, and turbulence associated with ultra-relativistic jets, we develop a new relativistic hydrodynamics (RHD) code based on the weighted essentially non-oscillatory (WENO) scheme. It is a 5th-order accurate, finite-difference scheme, which has been widely used for solving hyperbolic systems of conservation equations. The code is parallelized with MPI and OpenMP. Through an extensive set of tests, the accuracy and efficiency of different WENO reconstructions, and different time discretizations are assessed. Different implementations of the equation of state (EOS) for relativistic fluid are incorporated, As the fiducial setup for simulations of ultra-relativistic jets, we adopt the EOS in Ryu et al. (2006) to treat arbitrary adiabatic index of relativistic fluid, the WENO-Z reconstructions to minimize numerical dissipation without loss of stability, and the strong stability preserving Runge-Kutta (SSPRK) method to achieve stable time stepping with large CFL numbers. In addition, the code includes a high-order flux averaging along the transverse directions for multi-dimensional problems, and the modified eigenvalues for the acoustic modes to effectively control the carbuncle instability. We find that the new code performs satisfactorily simulations of ultra-relativistic jets.

  • PDF

Test-particle Solutions for Electron Acceleration in Low Mach Number Shocks

  • Kang, Hyesung
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.52.1-52.1
    • /
    • 2020
  • We propose semi-analytic models for the electron momentum distribution in weak shocks that accounts for both in situ acceleration and reacceleration through diffusive shock acceleration (DSA). In the former case, a small fraction of incoming electrons is assumed to be reflected at the shock ramp and pre-accelerated to the so-called injection momentum, pinj, above which particles can diffuse across the shock transition and participate in the DSA process. This leads to the DSA power-law distribution extending from the smallest momentum of reflected electrons, pref, all the way to the cutoff momentum, peq, constrained by radiative cooling. In the latter case, fossil electrons, specified by a power-law spectrum with a cutoff, are assumed to be re-accelerated from pref up to peq via DSA. We show that, in the in situ acceleration model, the amplitude of radio synchrotron emission depends strongly on the shock Mach number, whereas it varies rather weakly in the re-acceleration model.

  • PDF

Electron Preacceleration at Weak Quasi- Perpendicular ICM Shocks: Effects of Shock Surface Rippling

  • Ha, Ji-Hoon;Kim, Sunjung;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.55.2-55.2
    • /
    • 2020
  • Radio relics in the outskirts of galaxy clusters are interpreted as synchrotron radiation due to the relativistic electrons produced via diffusive shock acceleration (DSA) in shocks with low sonic Mach numbers, Ms ≤ 3 in high beta ICM plasma. Electron injection into the DSA process at such weak shocks is one of the key elements, which has yet to be fully understood. In this study, we explore the nature of kinetic microinstabilities excited in weak quasi-perpendicular shocks through 2D particle-in-cell simulations. We find Alfven-ion cyclotron (AIC), whistler, and mirror instabilities can be triggered by ion and electron temperature anisotropy in the immediate downstream of supercritical shocks with Ms > Mcrit ~ 2.3. In particular, AIC instability causes rippling of the shock surface, which in turn generates plasma waves on multi-scales and faciliates the electron preacceleration. Our results may contribute to understanding the origins of radio relics.

  • PDF

21세기 미생물학의 혁명과 구강위생관리 패러다임의 변화 (Evolution of microbiology in the 21st century and the change of oral health care management paradigm)

  • 김혜성
    • 대한치과의료관리학회지
    • /
    • 제6권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Prior to the end of the 20th century, microorganism research was limited to culture and has since been revolutionized by genetic analysis. Microorganisms, including bacteria, can cause disease, but most of them are commensal microorganisms in our bodies. This knowledge changes the pathological approach to infectious diseases and lends to a new perspective on the effects of gut and oral microorganisms on disease and health. The oral cavity, particularly the periodontal pocket, is considered to be a reservoir of microbes that cause disease, and oral microbial control is becoming more important. In this review, I will examine the changes in the microbiological revolution and the meaning of oral healthcare management based on those changes.

FR-II radio jets and the acceleration of UHECRs

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.39.2-39.2
    • /
    • 2021
  • To investigate the acceleration of ultra-high energy cosmic rays (UHECRs) in relativistic jets of FR-II galaxies, we simulate high-power jets with jet powers of Q~10^46erg/s in a stratified galaxy cluster halo using a state-of-art relativistic hydrodynamic (RHD) code we have recently developed. With the simulated jet-induced flow profiles, we then perform Monte-Carlo simulations, where the transport of high-energy particles is followed assuming large-angle scatterings in the flow-rest frame. We estimate the energy gains and acceleration times in the acceleration processes by shocks, shear, and turbulence. We present the results and discuss implications on the acceleration of UHECRs in FR II radio jets.

  • PDF

Faraday Rotation Measure and Cosmic Magnetic Field

  • Cho, Hyunjin;Ryu, Dongsu;Ha, Ji-hoon;Kang, Hyesung
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.39.3-40
    • /
    • 2021
  • The Faraday rotation measure (RM) of extragalactic radio sources is one of tools that can explore the magnetic field in the cosmic web. We have investigated the statistical properties of the RM using the data of simulations for the large-scale structure formation of the universe. Various modelings for the cosmic magnetic field including the redshift dependence, and the intrinsic RM of radio sources have been considered. We here present the structure functions (SFs) of simulated RMs for small angular separations, and compare the SFs with observations, specifically those from the NRAO VLA Sky Survey (NVSS) and LOFAR Two-Metre Sky Survey (LoTSS). We then discuss the implications of our work.

  • PDF

Structures and Energetics of Flows in Ultra-relativistic Jets

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.36.3-36.3
    • /
    • 2021
  • We study ultra-relativistic jets on several tens kpc scales through three-dimensional relativistic hydrodynamic (RHD) simulations using a new RHD code based on the weighted essentially non-oscillatory (WENO) scheme. Utilizing the high-resolution and high-accuracy capabilities of the new code, we especially explore the structures and energetics of nonlinear flows, such as shocks, turbulence, velocity shear in different parts of jets. We find that the mildly relativistic shocks which form in the jet backflow are most effective for the shock dissipation of the jet energy, while the turbulent dissipation is largest either in the backflow or in the shocked ICM, depending on the jet parameter. The velocity shear is strongest across the jet flow to the cocoon boundary. Our results should have important implications for the studies of high-energy cosmic-ray production in radio galaxies.

  • PDF

Properties of Shocks in Simulated Merging Clusters

  • Lee, Eunyu;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.67.3-67.3
    • /
    • 2021
  • Shocks are induced in the intracluster medium by mergers of subclusters during the hierarchical structure formation of the universe. Radio relics detected in the outskirts of galaxy clusters have been interpreted as diffuse synchrotron emission from cosmic ray electrons accelerated at such merger shocks. Using a set of cosmological hydrodynamic simulations, we study how the properties of merger-driven shocks depend on the parameters such as the mass ratio and impact parameter of mergers. In particular, we examine the distribution of the Mach number and energetics of shocks associated with synthetic radio relics in simulated merging clusters. In this poster, we will present the preliminary results and the implications.

  • PDF

EFFECTS OF WAVE-PARTICLE INTERACTIONS ON DIFFUSIVE SHOCK ACCELERATION AT SUPERNOVA REMNANTS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제46권1호
    • /
    • pp.49-63
    • /
    • 2013
  • Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alf$\acute{e}$enic drift, and free escape boundary. We show that, if scattering centers drift with the Alf$\acute{e}$en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv$\acute{e}$nic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and ${\gamma}-ray$ bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.

Insulin activates EGFR by stimulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells

  • Shin, Miyoung;Yang, Eun Gyeong;Song, Hyun Kyu;Jeon, Hyesung
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.342-347
    • /
    • 2015
  • The expression of epidermal growth factor receptor (EGFR) is an important diagnostic marker for triple-negative breast cancer (TNBC) cells, which lack three hormonal receptors: estrogen and progesterone receptors as well as epidermal growth factor receptor 2. EGFR transactivation can cause drug resistance in many cancers including TNBC, but the mechanism underlying this phenomenon is poorly defined. Here, we demonstrate that insulin treatment induces EGFR activation by stimulating the interaction of EGFR with insulin-like growth factor receptor 1 (IGF-1R) in the MDA-MB-436 TNBC cell line. These cells express low levels of EGFR, while exhibiting high levels of IGF-1R expression and phosphorylation. Low-EGFRexpressing MDA-MB-436 cells show high sensitivity to insulinstimulated cell growth. Therefore, unexpectedly, insulin stimulation induced EGFR transactivation by regulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells. [BMB Reports 2015; 48(6): 342-347]