• Title/Summary/Keyword: Hyers-Ulam stability of functional equations

Search Result 100, Processing Time 0.023 seconds

STABILITY OF FUNCTIONAL EQUATIONS WITH RESPECT TO BOUNDED DISTRIBUTIONS

  • Chung, Jae-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.361-370
    • /
    • 2008
  • We consider the Hyers-Ulam type stability of the Cauchy, Jensen, Pexider, Pexider-Jensen differences: $$(0.1){\hspace{55}}C(u):=u{\circ}A-u{\circ}P_1-u{\circ}P_2,\\(0.2){\hspace{55}}J(u):=2u{\circ}\frac{A}{2}-u{\circ}P_1-u{\circ}P_2,\\(0.3){\hspace{18}}P(u,v,w):=u{\circ}A-v{\circ}P_1-w{\circ}P_2,\\(0.4)\;JP(u,v,w):=2u{\circ}\frac{A}{2}-v{\circ}P_1-w{\circ}P_2$$, with respect to bounded distributions.

  • PDF

STABILITY AND SOLUTION OF TWO FUNCTIONAL EQUATIONS IN UNITAL ALGEBRAS

  • Yamin Sayyari;Mehdi Dehghanian;Choonkil Park
    • Korean Journal of Mathematics
    • /
    • v.31 no.3
    • /
    • pp.363-372
    • /
    • 2023
  • In this paper, we consider two functional equations: (1) h(𝓕(x, y, z) + 2x + y + z) + h(xy + z) + yh(x) + yh(z) = h(𝓕(x, y, z) + 2x + y) + h(xy) + yh(x + z) + 2h(z), (2) h(𝓕(x, y, z) - y + z + 2e) + 2h(x + y) + h(xy + z) + yh(x) + yh(z) = h(𝓕(x, y, z) - y + 2e) + 2h(x + y + z) + h(xy) + yh(x + z), without any regularity assumption for all x, y, z in a unital algebra A, where 𝓕 : A3 → A is defined by 𝓕(x, y, z) := h(x + y + z) - h(x + y) - h(z) for all x, y, z ∈ A. Also, we find general solutions of these equations in unital algebras. Finally, we prove the Hyers-Ulam stability of (1) and (2) in unital Banach algebras.

On the Stability of Orthogonally Cubic Functional Equations

  • Baak, Choonkil;Moslehian, Mohammad Sal
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.69-76
    • /
    • 2007
  • Let $f$ denote a mapping from an orthogonality space ($\mathcal{X}$, ${\bot}$) into a real Banach space $\mathcal{Y}$. In this paper, we prove the Hyers-Ulam-Rassias stability of the orthogonally cubic functional equations $f(2x+y)+f(2x-y)=2f(x+y)+2f(x-y)+12f(x)$ and $f(x+y+2z)+f(x+y-2z)+f(2x)+f(2y)=2f(x+y)+4f(x+z)+4f(x-z)+4f(y+z)+4f(y-z)$, where $x{\bot}y$, $y{\bot}z$, $x{\bot}z$.

  • PDF

FIXED POINTS AND FUZZY STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

  • Lee, Jung Rye;Shin, Dong Yun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.273-286
    • /
    • 2011
  • Using the fixed point method, we prove the Hyers-Ulam stability of the following quadratic functional equations $${cf\left({\displaystyle\sum_{i=1}^n\;xi}\right)+{\displaystyle\sum_{i=2}^nf}{\left(\displaystyle\sum_{i=1}^n\;x_i-(n+c-1)x_j\right)}\\ {=(n+c-1)\;\left(f(x_1)+c{\displaystyle\sum_{i=2}^n\;f(x_i)}+{\displaystyle\sum_{i in fuzzy Banach spaces.

STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN RANDOM NORMED SPACES

  • Schin, Seung Won;Ki, DoHyeong;Chang, JaeWon;Kim, Min June;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.395-407
    • /
    • 2010
  • In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations $$cf\(\sum_{i=1}^{n}x_i\)+\sum_{j=2}^{n}f\(\sum_{i=1}^{n}x_i-(n+c-1)x_j\)\\=(n+c-1)\(f(x_1)+c\sum_{i=2}^{n}f(x_i)+\sum_{i<j,j=3}^{n}\(\sum_{i=2}^{n-1}f(x_i-x_j\)\),\\Q\(\sum_{i=1}^{n}d_ix_i\)+\sum_{1{\leq}i<j{\leq}n}d_id_jQ(x_i-x_j)=\(\sum_{i=1}^{n}d_i\)\(\sum_{i=1}^{n}d_iQ(x_i)\)$$ in random normed spaces.

ON THE STABILITY OF THE GENERAL SEXTIC FUNCTIONAL EQUATION

  • Chang, Ick-Soon;Lee, Yang-Hi;Roh, Jaiok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.295-306
    • /
    • 2021
  • The general sextic functional equation is a generalization of many functional equations such as the additive functional equation, the quadratic functional equation, the cubic functional equation, the quartic functional equation and the quintic functional equation. In this paper, motivating the method of Găvruta [J. Math. Anal. Appl., 184 (1994), 431-436], we will investigate the stability of the general sextic functional equation.

ON A FUNCTIONAL EQUATIONS ON GROUPS

  • Chung, Jukang-K.;Jung, Soon-Mo;Prasanna K.Sahoo
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.37-47
    • /
    • 2001
  • We present the general solution of the functional equation f(x$_1$y$_1$,x$_2$y$_2$) + f(x$_1$y$_1$(sup)-1,x$_2$) + f(x$_1$,x$_2$y$_2$(sup)-1) = f(x$_1$y$_1$(sup)-1,x$_2$y$_2$(sup)-1) + f(x$_1$y$_1$,x$_2$) + f(x$_1$,x$_2$y$_2$). Furthermore, we also prove the Hyers-Ulam stability of the above functional equation.

  • PDF

FUNCTIONAL EQUATIONS IN BANACH MODULES AND APPROXIMATE ALGEBRA HOMOMORPHISMS IN BANACH ALGEBRAS

  • Boo, Deok-Hoon;Kenary, Hassan Azadi;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.33-52
    • /
    • 2011
  • We prove the Hyers-Ulam stability of partitioned functional equations in Banach modules over a unital $C^*$-algebra. It is applied to show the stability of algebra homomorphisms in Banach algebras associated with partitioned functional equations in Banach algebras.