• 제목/요약/키워드: Hydrothermal synthesis methods

검색결과 38건 처리시간 0.028초

수열합성을 이용하여 제작한 Fe3O4 결정입자의 자기적 특성 (Magnetic Properties of Micron Sized Fe3O4 Crystals Synthesized by Hydrothermal Methods)

  • 이기범;남충희
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.481-486
    • /
    • 2019
  • Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 ㎛) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°-80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.

Facile Synthesis of Hydroxyapatite by Hydrothermal and Solvent Combustion Methods

  • Bramhe, Sachin N;Lee, Hyun Chul;Chu, Min Cheol;Ryu, Jae-Kyung;Balakrishnan, Avinash;Kim, Taik Nam
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.492-496
    • /
    • 2015
  • Hydroxyapatite (HA), which is an important calcium phosphate mineral, has been applied in orthopedics, dentistry, and many other fields depending upon its morphology. HA can be synthesized with different morphologies through controlling the synthesis method and several parameters. Here, we synthesize various morphologies of HA using two simple methods: hydrothermal combustion and solution combustion. The phase purity of the synthesized HA is confirmed using X-ray diffractometry. It demonstrates that pure phased hydroxyapatite can be synthesized using both methods. The morphology of the synthesized powder is examined using scanning electron microscopy. The effects of pH and temperature on the final powder are also investigated. At $140^{\circ}C$, using the hydrothermal method, nano-micro HA rods with a hexagonal crystal structure can be synthesized, whereas using solution combustion method at $600^{\circ}C$, a dense cubic morphology can be synthesized, which exhibits monoclinic crystal structures.

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • 제6권1호
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

수열합성법에 의한 Zinc Selenide 나노 분말 합성 및 미세구조 특성 연구 (Fabrication and Characterization of Nano-Sized ZnSe Powders by Hydrothermal Process)

  • 김미소;홍현선
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.459-465
    • /
    • 2017
  • Nano-sized Zinc selenide (ZnSe) powder was successfully synthesized using Zn and Se precursors in a hydrothermal process. Temperature for the synthesis was varied from $95^{\circ}C$ to $180^{\circ}C$ to evaluate its influence on the microstructural properties of the synthetic particles. ZnSe powder thus fabricated was characterized using various analytical tools such as SEM, XRD, TEM and UV-Vis methods. Two types of ZnSe particles, that is, the precipitated particle and the colloidal particles, were identified in the analysis. The precipitated particles were around 100 nm in average size, whereas the average size of the colloidal particles was around 20 nm. The precipitated particles made at $150^{\circ}C$ and $180^{\circ}C$ were found to be a single phase of ZnSe; however, an inhomogeneous phase was obtained at the lower synthesis temperature of $95^{\circ}C$, suggesting that the temperature for the synthesis should be over $100^{\circ}C$. The precipitated particles were inactive in the UV-Vis absorption investigation, whereas the colloidal particles showed that absorptions occurred at 380 nm in the UV-Vis spectrum.

수열합성법으로 제조된 나노막대 구조 WO3의 광촉매 효과 및 염료 흡착 반응 (Photocatalytic and Adsorption Properties of WO3 Nanorods Prepared by Hydrothermal Synthesis)

  • 유수열;남충희
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.483-488
    • /
    • 2017
  • Transition-metal oxide semiconductors have various band gaps. Therefore, many studies have been conducted in various application fields. Among these, methods for the adsorption of organic dyes and utilization of photocatalytic properties have been developed using various metal oxides. In this study, the adsorption and photocatalytic effects of $WO_3$ nanomaterials prepared by hydrothermal synthesis are investigated, with citric acid added in the hydrothermal process as a structure-directing agent. The nanostructures of $WO_3$ are studied using transmission electron microscopy and scanning electron microscopy images. The crystal structure is investigated using X-ray diffraction patterns, and the changes in the dye concentrations adsorbed on $WO_3$ nanorods are measured with a UV-visible absorption spectrophotometer based on Beer-Lambert's law. The methylene blue (MB) dye solution is subjected to acid or base conditions to monitor the change in the maximum adsorption amount in relation to the pH. The maximum adsorption capacity is observed at pH 3. In addition to the dye adsorption, UV irradiation is carried out to investigate the decomposition of the MB dye as a result of photocatalytic effects. Significant photocatalytic properties are observed and compared with the adsorption effects for dye removal.

마이크로파 수열법에 의한 PbTiO$_3$ PMN 세라믹분말의 합성 (Microwave Hydrothermal Sythesis of PbTiO$_3$ and PMN Ceramic Powders)

  • 배강
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.465-471
    • /
    • 1998
  • Lead titanate(PT) and lead magnesium niobate(PMN) ceramic powders were prepared by microwave hy-drothermal method using teflon bomb. Raw materials were Pb(NO3)2 and TiO2 for lead titanate and Pb(NO3)2 Nb2O5 and Mg(NO)3.6H2O for PMN with NaOH as mineralizer in both cases. in lead titanate synthsis rate of microwave hydrothermal method was faster three times than one f conventional hydrothermal methods In lead magnesium niobate synthsis the mixture of perovskite and pyrochlore phases was obtained by single step technique and the PMN was not obtained by double step technique due to low temperature limitation of teflon bomb.

  • PDF

전기방사와 수열합성법으로 제작한 광전화학셀 전극용 나노 계층형 아연산화물 구조 연구 (ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes)

  • 이환표;정혁;김옥길;김효진;김도진
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.655-660
    • /
    • 2013
  • Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at $400^{\circ}C$ in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.

Morphology Controlled Synthesis of γ-Al2O3 Nano-Crystallites in Al@Al2O3 Core-Shell Micro-Architectures by Interfacial Hydrothermal Reactions of Al Metal Substrates

  • Dohyeon Han;Doohwan Lee
    • Nanomaterials
    • /
    • 제11권2호
    • /
    • pp.310-322
    • /
    • 2021
  • Fine control of morphology and exposed crystal facets of porous γ-Al2O3 is of significant importance in many application areas such as functional nanomaterials and heterogeneous catalysts. Herein, a morphology controlled in situ synthesis of Al@Al2O3 core-shell architecture consisting of an Al metal core and a porous γ-Al2O3 shell is explored based on interfacial hydrothermal reactions of an Al metal substrate in aqueous solutions of inorganic anions. It was found that the morphology and structure of boehmite (γ-AlOOH) nano-crystallites grown at the Al-metal/solution interface exhibit significant dependence on temperature, type of inorganic anions (Cl-, NO3-, and SO42-), and acid-base environment of the synthesis solution. Different extents of the electrostatic interactions between the protonated hydroxyl groups on (010) and (001) facets of γ-AlOOH and the inorganic anions (Cl-, NO3-, SO42-) appear to result in the preferential growth of γ-AlOOH toward specific crystallographic directions due to the selective capping of the facets by adsorption of the anions. It is hypothesized that the unique Al@Al2O3 core-shell architecture with controlled morphology and exposed crystal-facets of the γ-Al2O3 shell can provide significant intrinsic catalytic properties with enhanced heat and mass transport to heterogeneous catalysts for applications in many thermochemical reaction processes. The direct fabrication of γ-Al2O3 nano-crystallites from Al metal substrate with in-situ modulation of their morphologies and structures into 1D, 2D, and 3D nano-architectures explored in this work is unique and can offer significant opportunities over the conventional methods.

Synthesis and spectroscopic characterization of zinc ferrite nanoparticles

  • Arora, Shefali;Nandy, Subhajit;Latwal, Mamta;Pandey, Ganesh;Singh, Jitendra P.;Chae, Keun H.
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.437-451
    • /
    • 2022
  • Synthesis approaches usually affect the physical and chemical properties of ferrites. This helps ferrite materials to design them for desired applications. Some of these methods are mechanical milling, ultrasonic method, micro-emulsion, co-precipitation, thermal decomposition, hydrothermal, microwave-assisted, sol-gel, etc. These methods are extensively reviewed by taking example of ZnFe2O4. These methods also affect the microstructure and local structure of ferrite which ultimately affect the physical and chemical properties of ferrites. Various spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Ultra Violet-Visible spectroscopy, Mossbauer spectroscopy, extended x-ray absorption fine structure, and electron paramagnetic resonance are found helpful to reveal this information. Hence, the basic principle and the usefulness of these techniques to find out appropriate information in ZnFe2O4 nanoparticles is elaborated in this review.

자성 유체용 미분 자성 분체의 제조 (Synthetic of Magnetic Fine Powder for Oil Suspending Magnetic Fluid)

  • 이경희;이병하;이재영
    • 한국세라믹학회지
    • /
    • 제28권2호
    • /
    • pp.146-152
    • /
    • 1991
  • Ultra fine and homogeneous (Ni0.4Zn0.6)Fe2O4 ferrite powders were prepared by direct-wet, Hydrothermal and coprecipitation methods. In case that specific surface areas of Ni-Zn ferrite powders were over 220㎡/g, 100㎡/g, 30㎡/g individually direct-wet, hydrothermal and coprecipitation methods. The Ni-Zn ferrite magnetic fluids of which Solvents were benzene or kerosene was prepared by making cation surfactant adsorbed on the surface of the (Ni0.4Zn0.6)Fe2O4. The results that measured dispersion and viscosity by making cation surfactant adsorbed were as follows. 1. The adsorption amount of Oleric acid be proportioned the specific surface area of powders. 2. The maximum amount of Oleric acid was 36wt% of dried powders which has 220㎡/g of specific surface area. 3. The stability of fluid by direct-wet synthesis emthod in benzene or kerosene solvent excellent.

  • PDF