• 제목/요약/키워드: Hydrothermal processing

검색결과 68건 처리시간 0.029초

Formation of Oriented Hydroxyapatite Rods by Hydrothermal Treatment of Calcite Single Crystal

  • Kim, Ill-Yong;Kikuta, Koichi;Ohtsuki, Chikara
    • 한국재료학회지
    • /
    • 제22권8호
    • /
    • pp.397-402
    • /
    • 2012
  • Morphological control on hydroxyapatite crystals has attractive prospects in research to clarify the effects of crystal planes on biological performance. Hydrothermal processing is known as a typical type of processing for fabricating well-grown crystals with unique morphology. The purpose of the present study is to examine the feasibility of well-crystallized crystals with oriented structures through hydrothermal treatment of calcite. A single crystal of calcite was applied to hydrothermal treatment in a phosphate solution at $160^{\circ}C$. Rod-shaped hydroxyapatite crystals with micrometer-size were formed on the {100} face of calcite after treatment, while nanometer-sized hydroxyapatite crystals were formed on the (111). The hydroxyapatite crystals formed on each plane were not morphologically changed with increasing treatment periods. An oriented structure of rod-shaped hydroxyapatite was constructed after hydrothermal treatment of {100} planes on the calcite single, while such orientation was not observed on the (111) plane after the treatment. The layer of hydroxyapatite formed on the {100} plane was thicker than that of the (111) plane. The {100} plane of calcite shows a higher reactivity than that of the (111) plane, which results in rapid crystal growth of hydroxyapatite. The difference in the morphology of the formed hydroxyapatite was governed by the reactivity of each crystal plane exposed to the surrounding solution.

Effect of hydrothermal processing on ginseng extract

  • Ryu, Jebin;Lee, Hun Wook;Yoon, Junho;Seo, Bumjoon;Kwon, Dong Eui;Shin, Un-Moo;Choi, Kwang-joon;Lee, Youn-Woo
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.572-577
    • /
    • 2017
  • Background: Panax ginseng Meyer is cultivated because of its medicinal effects on the immune system, blood pressure, and cancer. Major ginsenosides in fresh ginseng are converted to minor ginsenosides by structural changes such as hydrolysis and dehydration. The transformed ginsenosides are generally more bioavailable and bioactive than the primary ginsenosides. Therefore, in this study, hydrothermal processing was applied to ginseng preparation to increase the yields of the transformed ginsenosides, such as 20(S)-Rg3, Rk1, and Rg5, and enhance antioxidant activities in an effective way. Methods: Ginseng extract was hydrothermally processed using batch reactors at $100-160^{\circ}C$ with differing reaction times. Quantitative analysis of the ginsenoside yields was performed using HPLC, and the antioxidant activity was qualitatively analyzed by evaluating 2,2'-azino-bis radical cation scavenging, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and phenolic antioxidants. Red ginseng and sun ginseng were prepared by conventional steaming as the control group. Results: Unlike steaming, the hydrothermal process was performed under homogeneous conditions. Chemical reaction, heat transfer, and mass transfer are generally more efficient in homogeneous reactions. Therefore, maximum yields for the hydrothermal process were 2.5-25 times higher than those for steaming, and the antioxidant activities showed 1.6-4-fold increases for the hydrothermal process. Moreover, the reaction time was decreased from 3 h to 15-35 min using hydrothermal processing. Conclusion: Therefore, hydrothermal processing offers significant improvements over the conventional steaming process. In particular, at temperatures over $140^{\circ}C$, high yields of the transformed ginsenosides and increased antioxidant activities were obtained in tens of minutes.

액상환원침전법 및 수열반응법을 이용한 주석산화물 결정 합성에 관한 연구 (A study on the synthesis of tin oxide crystalline by the liquid reduction precipitation method and hydrothermal process)

  • 박일정;김건홍;김대원;최희락;정항철
    • 한국결정성장학회지
    • /
    • 제26권3호
    • /
    • pp.95-100
    • /
    • 2016
  • 본 연구에서는 염화주석, 하이드라진 그리고 수산화나트륨을 원료로 하여 용액환원침전법과 수열반응법을 이용하여 주석산화물 결정을 제조하여, 주요 실험 변수에 의한 결정상 및 형상을 XRD와 SEM을 이용하여 분석하였다. 원료의 몰 비에 따라 구형 및 판상의 주석산화물 결정을 얻을 수 있었으며, 그 결정상은 SnO, $Sn_6O_4(OH)_4$이었다. 그리고 수열반응법에 의하여 얻어진 결정 모양은 온도 조건에 따라 판상 및 꽃 모양의 SnO 결정이 얻어졌다.

마이크로파 수열법에 의한 PbTiO$_3$ PMN 세라믹분말의 합성 (Microwave Hydrothermal Sythesis of PbTiO$_3$ and PMN Ceramic Powders)

  • 배강
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.465-471
    • /
    • 1998
  • Lead titanate(PT) and lead magnesium niobate(PMN) ceramic powders were prepared by microwave hy-drothermal method using teflon bomb. Raw materials were Pb(NO3)2 and TiO2 for lead titanate and Pb(NO3)2 Nb2O5 and Mg(NO)3.6H2O for PMN with NaOH as mineralizer in both cases. in lead titanate synthsis rate of microwave hydrothermal method was faster three times than one f conventional hydrothermal methods In lead magnesium niobate synthsis the mixture of perovskite and pyrochlore phases was obtained by single step technique and the PMN was not obtained by double step technique due to low temperature limitation of teflon bomb.

  • PDF

Spectral Characteristics of Hydrothermal Alteration in Zuru, NW Nigeria

  • Aisabokhae, Joseph;Tampul, Hamman
    • 대한원격탐사학회지
    • /
    • 제35권4호
    • /
    • pp.535-544
    • /
    • 2019
  • This study demonstrated the ability of a Landsat-8 OLI multispectral data to identify and delineate hydrothermal alteration zones around auriferous prospects within the crystalline basement, North-western Nigeria. Remote sensing techniques have been widely used in lithological, structural discrimination and alteration rock delineation, and in general geological studies. Several artisanal mining activities for gold deposit occur in the surrounding areas within the basement complex and the search for new possible mineralized zones have heightened in recent times. Systematic Landsat-8 OLI data processing methods such as colour composite, band ratio and minimum noise fraction were used in this study. Colour composite of band 4, 3 and 2 was displayed in Red-Green-Blue colour image to distinguish lithologies. Band ratio ${\frac{4}{2}}$ image displayed in red was used to highlight ferric-ion bearing minerals(hematite, goethite, jarosite) associated with hydrothermal alteration, band ratio ${\frac{5}{6}}$ image displayed in green was used to highlight ferrous-ion bearing minerals such as olivine, amphibole and pyroxenes, while ratio ${\frac{6}{7}}$ image displayed in blue was used to highlight clay minerals, micas, talc-carbonates, etc. Band rationing helped to reduce the topographic illumination effect within images. The result of this study showed the distribution of the lithological units and the hydrothermal alteration zone which can be further prospected for mineral reserves.

Density control of ZnO nanorod arrays using ultrathin seed layer by atomic layer deposition

  • Shin, Seokyoon;Park, Joohyun;Lee, Juhyun;Choi, Hyeongsu;Park, Hyunwoo;Bang, Minwook;Lim, Kyungpil;Kim, Hyunjun;Jeon, Hyeongtag
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.401-406
    • /
    • 2018
  • We investigated the effect of ZnO seed layer thickness on the density of ZnO nanorod arrays. ZnO has been deposited using two distinct processes consisting of the seed layer deposition using ALD and subsequent hydrothermal ZnO growth. Due to the coexistence of the growth and dissociation during ZnO hydrothermal growth process on the seed layer, the thickness of seed layer plays a critical role in determining the nanorod growth and morphology. The optimized thickness resulted in the regular ZnO nanorod growth. Moreover, the introduction of ALD to form the seed layer facilitates the growth of the nanorods on ultrathin seed layer and enables the densification of nanorods with a narrow change in the seed layer thickness. This study demonstrates that ALD technique can produce densely packed, virtually defect-free, and highly uniform seed layers and two distinctive processes may form ZnO as the final product via the initial nucleation step consisting of the reaction between $Zn^{2+}$ ions from respective zinc precursors and $OH^-$ ions from $H_2O$.

Density control of ZnO nanorod arrays using ultrathin seed layer by atomic layer deposition

  • Seokyoon Shin;Joohyun Park;Juhyun Lee;Hyeongsu Choi;Hyunwoo Park;Minwook Bang;Kyungpil Lim;Hyunjun Kim;Hyeongtag Jeon
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.401-406
    • /
    • 2018
  • We investigated the effect of ZnO seed layer thickness on the density of ZnO nanorod arrays. ZnO has been deposited using two distinct processes consisting of the seed layer deposition using ALD and subsequent hydrothermal ZnO growth. Due to the coexistence of the growth and dissociation during ZnO hydrothermal growth process on the seed layer, the thickness of seed layer plays a critical role in determining the nanorod growth and morphology. The optimized thickness resulted in the regular ZnO nanorod growth. Moreover, the introduction of ALD to form the seed layer facilitates the growth of the nanorods on ultrathin seed layer and enables the densification of nanorods with a narrow change in the seed layer thickness. This study demonstrates that ALD technique can produce densely packed, virtually defect-free, and highly uniform seed layers and two distinctive processes may form ZnO as the final product via the initial nucleation step consisting of the reaction between Zn2+ions from respective zinc precursors and OH- ions from H2O.

제올라이트로부터 스멕타이트 수열 합성에 대한 연구 (Hydrothermal Synthesis of Smectite from Zeolite)

  • 채수천;김유동;장영남;배인국;류경원;이성기
    • 한국광물학회지
    • /
    • 제19권4호
    • /
    • pp.301-310
    • /
    • 2006
  • 수열합성법에 의하여 Na-P 형 및 Na-A형 제올라이트로부터 스멕타이트를 합성하였고 이들의 물리화학적 특성을 연구하였다. 제올라이트로부터 스멕타이트의 최적 합성조건은 반응온도 $290^{\circ}C$, 반응시간 72 h, 자생압력 $75{\sim}100kgf/cm^2$였으며, 스멕타이트의 합성을 위한 초기 반응 용액의 pH는 Na-P형 제올라이트의 경우, pH 6, 그리고 Na-A형 제올라이트의 경우, pH 10이었다. Na-P형 및 Na-A 형 제올라이트로부터 합성된 스멕타이트에 대한 부정방위, 정방위, 에티렌 그리콜 및 Greene-Kelly 시험법 등을 통하여 합성된 스멕타이트가 $12{\AA}$-바이델라이트임을 확인하였으며, 이들의 특성을 연구하였다.

수열법에 의한 Li4Ti5O12 Nanofibers 합성 및 전기화학적 특성에 관한 연구 (Synthesis and Electrochemical Characteristics of Li4Ti5O12 Nanofibers by Hydrothermal Method)

  • 김은경;최병현;지미정;권용진;서한;김영준;김광범
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.627-632
    • /
    • 2010
  • In this paper the effect of the structure, particle size, morphology of nanofibers and nanoparticles for the electrochemical characteristics of $Li_4Ti_5O_{12}$ was investigated. The $H_2Ti_2O_5{\cdot}H_2O$ synthesized in hydrothermal treatment from a NaOH treatment on $TiO_2$ by ion exchange processing with HCl solutions. After the $Li_4Ti_5O_{12}$ nanofibers synthesized in hydrothermal treatment of $H_2Ti_2O_5{\cdot}H_2O$ and $LiOH{\cdot}H_2O$. The hydrogen titanate precursor prepared by ion exchange processing with 0.1~0.3M HCl solutions and the final products calcined at $350^{\circ}C{\sim}400^{\circ}C$. The $Li_4Ti_5O_{12}$ nanofibers showed well reversibility during the insertion and extraction of Li, good cycle performance, high capacity and low electrochemical reaction resistance than nanoparticles. also c-rate exhibited a discharge capacity of 172 mAh/g at 0.2C and 115mAh/g at 5C, which is the 77%, 67% of that obtained in the process charged, discharged at 0.2C.