Density control of ZnO nanorod arrays using ultrathin seed layer by atomic layer deposition

  • Shin, Seokyoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Joohyun (Division of Nano-scale Semiconductor Engineering, Hanyang University) ;
  • Lee, Juhyun (Division of Materials Science and Engineering, Hanyang University) ;
  • Choi, Hyeongsu (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Hyunwoo (Division of Materials Science and Engineering, Hanyang University) ;
  • Bang, Minwook (Division of Materials Science and Engineering, Hanyang University) ;
  • Lim, Kyungpil (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyunjun (Division of Materials Science and Engineering, Hanyang University) ;
  • Jeon, Hyeongtag (Division of Materials Science and Engineering, Hanyang University)
  • Published : 2018.10.01

Abstract

We investigated the effect of ZnO seed layer thickness on the density of ZnO nanorod arrays. ZnO has been deposited using two distinct processes consisting of the seed layer deposition using ALD and subsequent hydrothermal ZnO growth. Due to the coexistence of the growth and dissociation during ZnO hydrothermal growth process on the seed layer, the thickness of seed layer plays a critical role in determining the nanorod growth and morphology. The optimized thickness resulted in the regular ZnO nanorod growth. Moreover, the introduction of ALD to form the seed layer facilitates the growth of the nanorods on ultrathin seed layer and enables the densification of nanorods with a narrow change in the seed layer thickness. This study demonstrates that ALD technique can produce densely packed, virtually defect-free, and highly uniform seed layers and two distinctive processes may form ZnO as the final product via the initial nucleation step consisting of the reaction between $Zn^{2+}$ ions from respective zinc precursors and $OH^-$ ions from $H_2O$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Z.R. Dai, Z.W. Pan, and Z.L. Wang, Adv. Funct. Mater. 13[1] (2003) 9-24. https://doi.org/10.1002/adfm.200390013
  2. L. Vayssieres and M. Graetzel, Angew. Chem. Int. Edit. 43[28] (2004) 3666-3670. https://doi.org/10.1002/anie.200454000
  3. J.-S. Na, B. Gong, G. Scarel, and G.N. Parsons, Acs Nano 3[10] (2009) 3191-3199. https://doi.org/10.1021/nn900702e
  4. N. Golego, S.A. Studenikin, and M. Cocivera, J. Electrochem. Soc. 147[4] (2000) 1592-1594. https://doi.org/10.1149/1.1393400
  5. M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.-W. Lee, and J.-M. Myoung, Small 3[4] (2007) 568-572. https://doi.org/10.1002/smll.200600479
  6. J.Y. Lee, Y.S, Choi, J.H. Kim, M.O. Park, and S. Im, Thin Solid Films 403 (2002) 553-557.
  7. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth. 225 (2001) 110-113. https://doi.org/10.1016/S0022-0248(01)00830-2
  8. N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, Mat Sci. Semicon. Proc. 2[3] (1999) 247-252. https://doi.org/10.1016/S1369-8001(99)00022-0
  9. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4 (2005) 455-459. https://doi.org/10.1038/nmat1387
  10. Y. Lin, Z. Zhang, Z. Tang, F. Yuan, and J. Li, Adv. Mater. Opt. Electr. 9[5] (1999) 205-209. https://doi.org/10.1002/1099-0712(199909/10)9:5<205::AID-AMO383>3.0.CO;2-8
  11. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, and M. Meyyappan, Nano Lett. 4[7] (2004) 1247-1252. https://doi.org/10.1021/nl049461z
  12. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. B 110[33] (2006) 16159-16161. https://doi.org/10.1021/jp062865q
  13. J.H. Choi, H. Tabata, and T. Kawai, J. Cryst. Growth 226[4] (2001) 493-500. https://doi.org/10.1016/S0022-0248(01)01388-4
  14. Y. Li, G.W. Meng, L.D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76[15] (2000) 2011-2013. https://doi.org/10.1063/1.126238
  15. R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson, and J.A. Switzer, Chem. Mater. 13[2] (2001) 508-512. https://doi.org/10.1021/cm000763l
  16. L. Vayssieres, Adv. Mater. 15[5] (2003) 464-466. https://doi.org/10.1002/adma.200390108
  17. B. Cao and W. Cai, J. Phys. Chem. C 112[3] (2008) 680-685. https://doi.org/10.1021/jp076870l
  18. Z.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, M.J. McDermott, M.A. Rodriguez, H. Konishi, and H. Xu, Nat. Mater. 2 (2003) 821-826. https://doi.org/10.1038/nmat1014
  19. T. Ma, M. Guo, M. Zhang, Y. Zhang, and X. Wang, Nanotechnology 18[3] (2007) 035605. https://doi.org/10.1088/0957-4484/18/3/035605
  20. J. Liu, J. She, S. Deng, J. Chen, and N. Xu, J. Phys. Chem. C 112[31] (2008) 11685-11690. https://doi.org/10.1021/jp8015563
  21. M. Leskela and M. Ritala, Angew. Chem. Int. Edit. 42[45] (2003) 5548-5554. https://doi.org/10.1002/anie.200301652
  22. S.M. George, Chem. Rev. 110[1] (2010) 111-131. https://doi.org/10.1021/cr900056b
  23. B.J. Coppa, R.F. Davis, and R.J. Nemanich, Appl. Phys. Lett. 82[3] (2003) 400-402. https://doi.org/10.1063/1.1536264
  24. Z.G. Wang, X.T. Zu, S. Zhu, and L.M. Wang, Physica E 35[1] (2006) 199-202. https://doi.org/10.1016/j.physe.2006.07.022
  25. S. Lee, S. Bang, J. Park, S. Park, W. Jeong, and H. Jeon, Phys. Status Solidi A 207[8] (2010) 1845-1849. https://doi.org/10.1002/pssa.200925514
  26. Q. Ahsanulhaq, A. Umar, and Y.B. Hahn, Nanotechnology 18[11] (2007) 115603. https://doi.org/10.1088/0957-4484/18/11/115603
  27. P.X. Gao and Z.L. Wang, J. Phys. Chem. B 108[23] (2004) 7534-7537. https://doi.org/10.1021/jp049657n
  28. A. Wei, X.W. Sun, C.X. Xu, Z.L. Dong, Y. Yang, S.T. Tan, and W. Huang, Nanotechnology 17[6] (2006) 1740. https://doi.org/10.1088/0957-4484/17/6/033
  29. J. Song and S. Lim, J. Phys. Chem. C 111[2] (2007) 596-600. https://doi.org/10.1021/jp0655017
  30. J.L. van Hemmen, S.B.S. Heil, J.H. Klootwijk, F. Roozeboom, C.J. Hodson, M.C.M. van de Sanden, and W.M.M. Kessels, J. Electrochem. Soc. 154[7] (2007) G165-169. https://doi.org/10.1149/1.2737629