• Title/Summary/Keyword: Hydrothermal conditions

Search Result 291, Processing Time 0.024 seconds

Structural Properties of ZnS Nanoparticles by Hydrothermal Synthesis Process Conditions and Optical Properties of Ceramic (수열합성 공정 변화에 따른 ZnS 나노분말의 구조 특성과 소결체의 광학적 특성)

  • Yeo, Seo-Yeong;Kwon, Tae-Hyeong;Kim, Chang-Il;Yun, Ji-Sun;Jeong, Young-Hun;Hong, Youn-Woo;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.392-397
    • /
    • 2018
  • In this paper, the ZnS nanoparticles were synthesized according to the process conditions of hydrothermal synthesis. When the molar ratio of Zn to S was 1:1.2, it was confirmed that it had a cubic single phase and a high crystal phase. After the molar ratio is fixed, hydrothermal synthesis was conducted at $180^{\circ}C$ for 24, 36, 72 and 96 h in order to confirm the structural change with the change of hydrothermal synthesis times. As the hydrothermal synthesis times increased, the particle size increased. The hydrothermal synthesized particle size for 72 h was considered to be suitable for sintering. The ZnS ceramic had a density of 99.7% and an excellent transmittance of ~70% in the long-wavelength region.

Synthesis of Nanocrystalline Ceria Powders for SOFC Electrolyte (SOFC 전해질 제조를 위한 나노결정 세리아 분말의 합성)

  • Kim, Jin-Soo;Kwon, Byeong-Wan;Park, Jun-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.656-659
    • /
    • 2005
  • Nanocrystalline ceria powders were prepared by hydrothermal treatment of cerium(IV) ammonium nitrate solution without a precipitating agent. A systematic investigation of the effect of hydrothermal temperature and react ion time on the physical properties of the product powders was carried out. When the hydrothermal temperature was increased, the product ceria powders exhibited larger crystallite size with higher yield. Increasing reaction time produced more crystalline ceria powders attributed to further hydrothermal reactions and structural rearrangement. The physical properties of ceria powders can be control led by adjusting the hydrothermal conditions.

  • PDF

A Study on the Hydrothermal Synthesis of Clay Mineral (II) -Hydrothermal Synthesis of Clay Mineral from Anorthite in San.Chung District of Korea- (수열반응에 의한 인공점토의 합성연구 (II) -경남 산청산 회장석으로부터 인공점토의 수열합성에 관한 연구-)

  • 이응상;이상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.735-747
    • /
    • 1995
  • The synthesis of clay mineral through the hydrothermal reaction of the anorthite, which is distributed in San Chung-District of Korea and called as the ground rock for halloysite-kaolin, has been investigated. It was observed that this anorthite sample was easily converted into clay mineral with 0.5 wt% HCl solution at a temperature below 20$0^{\circ}C$ under a pressure about 15 atm. The conversion reaction was promoted by adding aluminum chloride under the condition concerned. Aluminum chloride was considered to supply the insufficient aluminum ion during the conversion reaction and to reprepare the acid solution-condition by adding the HCl-component as a by-product. According to the electron micrographs, it was confirmed that fine tubular or needle-shaped halloysite-kaolin minerals with the crystal length shorter than about 1.1${\mu}{\textrm}{m}$ could be obtained by the hydrothermal reaction for 5 days under those conditions.

  • PDF

Color enhancement of Australian natural sapphire by the hydyothermal method (수열법에 의한 호주산 천연 사파이어의 색상 개선)

  • Kim, Hee-Seung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.240-243
    • /
    • 2006
  • The significant color enhancement in low quality Australian natural sapphire has been achieved by a hydrothermal method. The optimal conditions for the color enhancement of Australian natural sapphire were as follows; hydrothermal reaction temperature: $320{\sim}350^{\circ}C$, duration : 3 days, hydrothermal solvent: 2 M NaOH solution. After the hydrothermal treatment, Australian natural sapphires of transparent colors were obtained, and their grades were found to be improved from commercial to middle/top grade by value chart analysis.

Studies on hydrothermal synthetic conditions for preparation of PZT powders (PZT 분말 제조를 위한 수열합성 조건에 관한 연구)

  • 정성택;이기정;서경원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.254-262
    • /
    • 1996
  • $Pb(Zr_{0.52}Ti_{0.48})O_{3}$ (PZT) ceramics were prepared with uniform particle size of $1~3\;\mu\textrm{m}$ by hydrothermal synthesis at various conditions, such as hydrothermal reaction temperature, concentration of mineralizer and reaction time. PZT ceramics were formed above $180^{\circ}C$ for 2 hrs reaction using 10 M KOH solution as a mineralizer, but reaction condition was slightly different by starting materials. Morphology and characterization of PZT powders were investigated by XRD and SEM. By increasing the reaction temperature, KOH concentration and reaction time, the composition of the PZT phase tended to be homogeneous phase.

  • PDF

On the Possibility of Bulk Large Diamond Single Crystal Synthesis with Hydrothermal Process

  • Andrzej M. Szymanski
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.18-32
    • /
    • 1997
  • Analysis of geological data, relating to occurrence and formation of diamonds as well as host rocks, inclined author to have different outlook on the diamond genesis and to establish a proposition on their formation at pneumatolytic-hydrothermal conditions near superficial Earth zones. Based on that theoretical foundations and experimental works, the first low-pressure and low-temperature hydrothermal diamond synthesis from water solution in pressure autoclave was executed. As a result, the natural diamond seed crystal grew bigger ad coupling of the synthetic diamond single-crystalline grains were obtained. SEM documentation proofs that parallely paragenetic crystallization of quartz and diamond, and nucleation of new octahedral diamond crystals brush take place on the seed crystal surface. Forecast of none times growth of diamond industrial application at 2000 and seventeen times at 2010 with reference to 1995, needs technology of large and pure single-crystals diamond synthesis. Growth of the stable and destressed diamond single-crystals in the pseudo-metastable diamond plot, may be realized with processes going through the long time and with participation of free radicals catalysts admixtures only. Sol-gel colloidal processes are an example of environment which form stable crystals in thermodynamically unstable conditions through a long time. Paper critically discusses a whole way of studies on the diamond synthesis, from high-pressure and high-temperature processes through chemical vapour deposition up to hydrothermal experiments.

  • PDF

Application of analytic hierarchy process technique for selecting a hydrothermal energy site (수열에너지 입지 선정을 위한 계층화분석법의 적용)

  • Joohyun Ahn;Suwan Park;Changhyun Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.69-81
    • /
    • 2024
  • In this study, an evaluation system that can be used to evaluate the feasibility of developing and supplying hydrothermal energy for the operation of large-scale complex facilities was developed. To this end, this study derived factors to be considered when selecting a location for the use of hydrothermal energy using raw water from multi-purpose dams and regional water supply systems through literature survey and expert interviews. The evaluation indicators derived from this study are divided into four sectors: hydrothermal energy utilization factors, location factors, planning factors, and disaster safety factors, and are composed of 10 mid-level indicators and 34 detailed planning indicators. The relative importance of all factors was derived using the Analytic Hierarchy Process (AHP) technique, and the developed evaluation indicators and relative importance were applied to four multi-purpose dam regions in the country. As a result, it was found that in the development and use of hydrothermal energy utilizing regional raw water supply line the urban planning conditions of the supply site can have a greater impact on the location selection results than the hydrothermal energy development itself. Due to the characteristics of the evaluation indicators developed in this study and their nature as comprehensive indicators, it is believed that the results should be applied to determine the overall adequacy of site selection in the early stages of hydrothermal energy development. In the future, it is believed that it will be necessary to analyze the problems in supplying and operating hydrothermal energy using raw water from multi-purpose dams and regional water resources. Based on the analysis the evaluation system developed in this study is expected to be improved and supplemented.

Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery

  • Yang, Ji-Hyun;Shin, Hee-Yong;Ryu, Young-Jin;Lee, Choul-Gyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.267-273
    • /
    • 2018
  • Hydrothermal liquefaction of Chlorella vulgaris feedstock containing 80% (w/w) water was conducted in a batch reactor as a function of temperature (300, 325 and $350^{\circ}C$) and reaction times (5, 10 and 30 min). The biocrude yield, elemental composition and higher heating value obtained for various reaction conditions helped to predict the optimum conditions for maximizing energy recovery. To optimize the recovery of inorganic nutrients, we further investigated the effect of reaction conditions on the ammonium ($NH_4{^+}$), phosphate ($PO_4{^{3-}}$), nitrate ($NO_3{^-}$) and nitrite ($NO_2{^-}$) concentrations in the aqueous phase. A maximum energy recovery of 78% was obtained at $350^{\circ}C$ and 5 min, with a high energy density of 34.3 MJ/kg and lower contents of oxygen. For the recovery of inorganic nutrients, shorter reaction times achieved higher phosphorus recovery, with maximum recovery being 53% at $350^{\circ}C$ and 5 min. Our results indicate that the reaction condition of $350^{\circ}C$ for 5 min was optimal for maximizing energy recovery with improved quality, at the same time achieving a high phosphorus recovery.

Hydrothermal synthesis of $PbTiO_3$ oxides with perovskite structure

  • Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2003
  • The preparation of $PbTiO_3$ powder was carried out using the oxide starting material by hydrothermal method. The powder of a crystalline phase with perovskite structure was synthesized. The optimum conditions for the preparation of powder were as follows; hydrothermal solvent; 8M-KOH or 8M-NaOH, reaction temperature; 250~$270^{\circ}C$, run time; 10 h. The ,shape of synthesized powders were well developed crystalline faces with specific surface area of about 2.3 $\textrm m^2$/g in KOH solution and about 5.0 $\textrm m^2$/g in NaOH solution. The cell parameters of powder were a = 3.90$\AA$, c = 4.14 $\AA$ and cell volume was 57.30 $\AA^3$. The cell ratio (c/a) of powder was the same as the theoretical ratio with c/a = 1.06 and the phase transition temperature(Tc) of the powders was about $470^{\circ}C$.

Synthesis of $PbLaTiO_{3}$: Mn powders by hydrothermal method

  • Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.63-67
    • /
    • 2003
  • Synthesis of $PbLaTiO_{3}$ : Mn powders containing La and Mn was carried out using $PbO,\;TiO_{2},\;La_{2}O_{3}\;and\;MnO_{2}$ as starting materials by hydrothermal method. In the synthesis of single phase $PbLaTiO_{3}$ : Mn powder containing La and Mn, the optimal x value corresponding to La substitution was 0.01 which corresponds to $0.99(Pb_{1-x}La_{2x/3}TiO_{3})+0.01MnO_{2}$. The optimal conditions for the preparation of the powder synthesis were 8 M-KOH solvent of hydrothermal solvent, $270^{\circ}C$ of reaction temperature and 24 hrs of run time. It was found that the synthesized powders had spherical morphology with average particle size of 70 nm and specific surface area of $5.5\;m^{2}/g$.