• Title/Summary/Keyword: Hydrophobic moiety

Search Result 44, Processing Time 0.024 seconds

The Synthesis and Evaluation of Pendant Oligosaccharide-Lipid Side Chain Copolymer

  • Nam, Hye-Sung;Kim, Hyun-Joo;Nam, Kwang-Woo;Chung, Dong-June
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.115-121
    • /
    • 2003
  • In this research, the in vitro anti-thrombogenecity of artificial materials was evaluated using hydrophilic/hydrophobic copolymers containing oiligosaccharide as hydrophilic moiety and phospholipid as hydrophobic moiety respectively. N-(p-vinylbenzyl)-[O-$\alpha$-D-glucopyranosyl-(1longrightarrow4)]$_{n-1}$-D-glucoamide(VM7A) was (VM7 A) was adopted as hydrophilic oligosaccharide and 2-acryloxybutyl-2-(triethylammonium)ethyl phosphoric acid (HBA-choline) was adopted as hydrophobic phospholipid. Copolymers having various monomer feeding molar ratios were synthesized through radical polymerization. The synthesized copolymers were identified using FT-IR, $^1$H-NMR, XPS, and DSC. The surface energy of the copolymers were evaluated by dynamic contact angle (DCA) method and checked different roles of VM7A as hydrophilic moiety and HBA-choline as hydrophobic moiety on surface. The surface morphological differences between hydrated and unhydrated surfaces of copolymers were observed and evaluated using Am. The platelets were separated from canine whole blood by centrifugation and adopted to the anti-thromobogenecity test of the copolymers. From the results, we find out that as VM7A ratio increases, so did anti-thrombogenecity. Such results show the possibility of using these copolymers as blood compatible materials in living body.y.

Hydrophobic Interaction Between the Acyl Moiety of Choline Esters and the Active Site of Acetylcholinesterase

  • Myung, Pyung-Keun;Sok, Dai-Eun
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.290-292
    • /
    • 1995
  • Existence of a binding site for choline esters with an acyl chain of various sizes was examined by comparing the inhibitory potency of the respective compound. In contrast to acetylcholine, which showed a pure competitive pattern of inhibition, choline esters with an acyl chain of a long size ($C{\geq}5$) expressed a mixed type of inhibition. Binding of choline esters containing a long chain ($C_7-C_{12}$) to the hydrophobic region in the active site is deduced from a linear relationship between the $K_{iE}$ value and the size of acyl moiety, and a good hydrophobicity relationship. In addition, the non-competitive component in the inhibition of acetylcholinesterase seems to be due to the interaction of choline esters with both the hydrophobic site and the trimethylammonium-binding site in the active center of the acetylated acetylcholinesterase.

  • PDF

Photochemical Property and Photodynamic Activity of Tetrakis(2-naphthyl) Porphyrin Phosphorus(V) Complex

  • Hirakawa, Kazutaka;Aoki, Shunsuke;Ueda, Hiroyuki;Ouyang, Dongyan;Okazaki, Shigetoshi
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.37-40
    • /
    • 2015
  • To examine the photosensitized biomolecules damaging activity, dimethoxyP(V)tetrakis(2-naphthyl)porphyrin (NP) and dimethoxyP(V)tetraphenylporphyrin (PP) were synthesized. The naphthyl moiety of NP hardly deactivated the photoexcited P(V)porphyrin ring in ethanol. In aqueous solution, the naphthyl moiety showed the quenching effect on the photoexcited porphyrin ring, possibly through electron transfer and self-quenching by a molecular association. Binding interaction between human serum albumin (HSA), a water soluble protein, and these porphyrins could be confirmed by the absorption spectral change. The apparent association constant of NP was larger than that of PP. It is explained by that more hydrophobic NP can easily bind into the hydrophobic pockets of HSA. The photoexcited PP effectively induced damage of the tryptophan residue of HSA, through electron transfer-mediated oxidation and singlet oxygen generation. NP also induced HSA damage during photo-irradiation and the contributions of the electron transfer and singlet oxygen mechanisms were speculated. The electron transfer-mediated mechanism to the photosensitized protein damage should be advantageous for photodynamic therapy in hypoxic condition. The quantum yield of the HSA photodamage by PP was significantly larger than that of NP. The quenching effect of the naphthyl moiety is considered to suppress the photosensitized protein damage. In conclusion, the naphthalene substitution to the P(V)porphyrins can enhance the binding interaction with hydrophobic biomacromolecules such as protein, however, this substitution may reduce the photodynamic effect of P(V)porphyrin ring in aqueous media.

Mechanism of the Monoamine Oxidase Inhibition (Monoamine Oxidase의 억제 기구)

  • 강건일
    • YAKHAK HOEJI
    • /
    • v.27 no.4
    • /
    • pp.321-329
    • /
    • 1983
  • The review characterized active site(s) of MAO with respect to metal ions, hydrophobic and polar region, sulfhydryl group and flavin moiety. The mechanism of inhibition was dealt with three representative types of inhibitors; phenylcyclopropylamines, acetylenic amines, and hydrazines. Multiple forms of MAO was shortly described in relation to their selective inhibition. 84 reference were cited.

  • PDF

Extraction behaviors of platinum group metals in simulated high-level liquid waste by a hydrophobic ionic liquid bearing an amino moiety

  • Wu, Hao;Kim, Seong-Yun;Takahashi, Tadayuki;Oosugi, Haruka;Ito, Tatsuya;Kanie, Kiyoshi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1218-1223
    • /
    • 2021
  • A hydrophobic ionic liquid including an amino moiety ([DiOcAPmim][NTf2]) was synthesized. Its extraction behaviors towards Pd(II), Ru(III), Rh(III) were investigated in nitric acid aqueous solution as a function of contact time, effect of concentration of nitric acid, effect of temperature, and effect of co-existing metal ions. The extraction kinetics of Pd(II) was fairly fast and extraction equilibrium can be attained within only 5 min under the [HNO3] = 2.05 M. When [HNO3]< 1 M, the extraction percentage of Pd(II), Ru(III), Rh(III) were all above 80%. When [HNO3] reached 2 M, all of the extraction percentage decreased and in an order of Pd(II)>Ru(III)>Rh(III). When [HNO3]> 2 M, the extraction performance gradually recovered. The effect of temperature can slightly affect the extraction performance of Pd(II). Furthermore, in simulated high-level liquid waste, [DiOcAPmim][NTf2] showed a better preference towards Pd(II) under the interference of various other co-existing metal ions.

Physicochemical Characterization and Carcinoma Cell Interaction of Self-Organized Nanogels Prepared from Polysaccharide/Biotin Conjugates for Development of Anticancer Drug Carrier

  • Park Keun-Hong;Kang Dong-Min;Na Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1369-1376
    • /
    • 2006
  • Self-organized nanogels were prepared from pullulan/biotin conjugates (PU/Bio) for the development of an effective anticancer drug delivery system. The degree of biotin substitution was 11, 19, and 24 biotin groups per 100 anhydroglucose units of pullulan. The physicochemical properties of the nanogels (PU/Bio1, 2 and 3) in aqueous media were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of all the samples was less than 300 nm with a unimodal size distribution. The critical aggregation concentrations (CACs) of the nanoparticles in distilled water were $2.8{\times}10^{-2},\;1.6{\times}10^{-2}$, and $0.7{\times}10^{-2}mg/ml$ for the PU/Bio1, 2, and 3, respectively. The aggregation behavior of the nanogels indicated that biotin can perform as a hydrophobic moiety. To observe the specific interaction with a hepatic carcinoma cell line (HepG2), the conjugates were labeled with rhodamine B isothiocyanate (RITC) and their intensities measured using a fluorescence microplate reader. The HepG2 cells treated with the fluorescence-labeled PU/Bio nanoparticles were strongly luminated compared with the control (pullulan). Confocal laser microscopy also confirmed internalization of the PU/Bio nanogels into the cancer cells. Such results demonstrated that the biotin in the conjugate acted as both a hydrophobic moiety for self-assembly and a tumor-targeting moiety for specific interaction with tumor cells. Consequently, PU/Bio nanogels would appear to be a useful drug carrier for the treatment of liver cancer.

Inhibitor Design for Human Heat Shock Protein 70 ATPase Domain by Pharmacophore-based in silico Screening

  • Lee, Jee-Young;Jung, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1717-1722
    • /
    • 2008
  • The 70 kDa heat-shock protein (Hsp70) involved in various cellular functions, such as protein folding, translocation and degradation, regulates apoptosis in cancer cells. Recently, it has been reported that the green tea flavonoid (−)-epigallocatechin 3-gallate (EGCG) induces apoptosis in numerous cancer cell lines and could inhibit the anti-apoptotic effect of human Hsp70 ATPase domain (hATPase). In the present study, docking model between EGCG and hATPase was determined using automated docking study. Epi-gallo moiety in EGCG participated in hydrogen bonds with side chain of K71 and T204, and has metal chelating interaction with hATPase. Hydroxyl group of catechin moiety also participated in metal chelating hydrogen bond. Gallate moiety had two hydrogen bondings with side chains of E268 and K271, and hydrophobic interaction with Y15. Based on this docking model, we determined two pharmacophore maps consisted of six or seven features, including three or four hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. We searched a flavonoid database including 23 naturally occurring flavonoids and 10 polyphenolic flavonoids with two maps, and myricetin and GC were hit by map I. Three hydroxyl groups of B-ring in myricetin and gallo moiety of GC formed important hydrogen bonds with hATPase. 7-OH of A-ring in myricetin and OH group of catechin moiety in GC are hydrogen bond donors similar to gallate moiety in EGCG. From these results, it can be proposed that myricetin and GC can be potent inhibitors of hATPase. This study will be helpful to understand the mechanism of inhibition of hATPase by EGCG and give insights to develop potent inhibitors of hATPase.

Separation and Purification of Teicoplanin by Diaion HP-20 and Conacnavalin A Chromatography (소수성 Diaion HP-20및 친화성 Concannvalin A 크로마토그래피를 이용한 Glycopeptide계 항생제 Teicoplanin의 분리 및 정제)

  • 김창진;이재찬;박해룡;박동진;김영배
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.201-204
    • /
    • 2003
  • Glycopeptide antibiotics, teicoplanin was purified from a mutant strain of Actinoplanes teichomyceticus ATCC31121, A. teichomyceticus MSL2211. We developed a simple procedure to separate and purify the teicoplanin from the fermentation broth. Teicoplanin was purified by two-step purification system, hydrophobic adsorption and sugar affinity chromatography in combination with HPLC analysis based on the properties of hydrophobic acyl chain and sugar moiety in teicoplanin. Teicoplanin was separated from the culture broth by Diaion HP-20 and further purified by concanavalin A affinity column chromatography. As an adsorbent resin, Diaion HP-20 in broth eliminated toxic effects on growth, reduced feedback repression of teicoplanin production, and assisted In rapid recovery of teicoplanin. The teicoplanin displayed the final yield of 80% and 95% of purity.