Physicochemical Characterization and Carcinoma Cell Interaction of Self-Organized Nanogels Prepared from Polysaccharide/Biotin Conjugates for Development of Anticancer Drug Carrier

  • Park Keun-Hong (College of Medicine, Pochon CHA University, Cell and Gene Therapy Research Institute) ;
  • Kang Dong-Min (Korea Basic Science Institute, Chuncheon Center) ;
  • Na Kun (Division of Biotechnology, The Catholic University of Korea)
  • Published : 2006.09.01

Abstract

Self-organized nanogels were prepared from pullulan/biotin conjugates (PU/Bio) for the development of an effective anticancer drug delivery system. The degree of biotin substitution was 11, 19, and 24 biotin groups per 100 anhydroglucose units of pullulan. The physicochemical properties of the nanogels (PU/Bio1, 2 and 3) in aqueous media were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of all the samples was less than 300 nm with a unimodal size distribution. The critical aggregation concentrations (CACs) of the nanoparticles in distilled water were $2.8{\times}10^{-2},\;1.6{\times}10^{-2}$, and $0.7{\times}10^{-2}mg/ml$ for the PU/Bio1, 2, and 3, respectively. The aggregation behavior of the nanogels indicated that biotin can perform as a hydrophobic moiety. To observe the specific interaction with a hepatic carcinoma cell line (HepG2), the conjugates were labeled with rhodamine B isothiocyanate (RITC) and their intensities measured using a fluorescence microplate reader. The HepG2 cells treated with the fluorescence-labeled PU/Bio nanoparticles were strongly luminated compared with the control (pullulan). Confocal laser microscopy also confirmed internalization of the PU/Bio nanogels into the cancer cells. Such results demonstrated that the biotin in the conjugate acted as both a hydrophobic moiety for self-assembly and a tumor-targeting moiety for specific interaction with tumor cells. Consequently, PU/Bio nanogels would appear to be a useful drug carrier for the treatment of liver cancer.

Keywords

References

  1. Bowman, B. B. and I. H. Rosenberg, 1987. Biotin adsorption by distal rat intestine. J. Nutr. 117: 2121-2126 https://doi.org/10.1093/jn/117.12.2121
  2. Budavari, S. 1996. Biotin, pp. 207, 1272. The Merck Index, 12th Ed
  3. Cannizzaro, S. M., R. F. Padera, R. Langer, R. A. Rogers, F. E. Black, M. C. Davies, S. J. B. Tendler, and K. M. Shakesheff. 1998. A novel biotinylated degradable polymer for cell-interactive applications. Biotech. Bioeng. 58: 529-535 https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<529::AID-BIT9>3.0.CO;2-F
  4. Chung, J. E., M. Yokoyama, and T. Okano. 2000. Inner core segment design for delivery control of thermo-responsive polymeric micelles. J. Control. Release 65: 93-103 https://doi.org/10.1016/S0168-3659(99)00242-4
  5. Gref, R., Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. 1994. Biodegradable long-circulating polymeric nanospheres. Science 263: 1600-1603 https://doi.org/10.1126/science.8128245
  6. Hashida, M., H. Hirabayashi, M. Nishikawa, and Y. Takakura. 1997. Targeted delivery of drugs and proteins to the liver via receptor-mediated endocytosis. J. Control. Release 46: 129-137 https://doi.org/10.1016/S0168-3659(96)01577-5
  7. Kim, C.-H. 2004. Glycoantigen biosyntheses of human hepatoma and colon cancer cells are dependent on different JV-acetylglucosaminyltransferase-IIl and V activities. J. Microbiol. Biotechnol. 14: 891-900
  8. Kong, G., R. D. Braun, and M. W. Dewhirst. 2001. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 61: 3027-3032
  9. Leamon, C. P. and P. S. Low. 1991. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. USA 88: 5572-5576
  10. Lee, E. S., K. Na, and Y. H. Bae. 2003. Polymeric micelle for tumor pH and folate mediated targeting. J. Control. Released 91: 103-113 https://doi.org/10.1016/S0168-3659(03)00239-6
  11. Lee, H.-K., I. N. Lee, J.-S. Yim, Y.-H. Kim, S.-H. Lee, K. Lee, Y.-M. Koo, S.-J. Kim, and B.-C. Jeong. 2005. Purification and characterization of CDMHK, a growth inhibitory molecule against cancer cell lines, from Myxobacterium sp. HK1 isolated from Korea soil. J. Microbiol. Biotechnol. 15: 734-739
  12. Lee, K. Y., W. H. Jo, I. C. Kwon, Y. H. Kim, and S. Y. Jeong. 1998. Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water. Macromolecules 31: 378-383 https://doi.org/10.1021/ma9711304
  13. Maeda, H., J. Wu, T. Sawa, Y. Matsumura, and K. Hori. 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65:271-284 https://doi.org/10.1016/S0168-3659(99)00248-5
  14. Marek, M., K. Kaiser, and H. J. Gruber. 1997. Biotin-pyrene conjugates with poly(ethylene glycol) spacers are convenient fluorescent probes for avidin and streptavidin. Bioconjugate Chem. 8: 560-566 https://doi.org/10.1021/bc970088e
  15. Na, K., E. S. Lee, and Y. H. Bae. 2003. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J. Control. Release 87: 3-13 https://doi.org/10.1016/S0168-3659(02)00345-0
  16. Na, K, K. H. Lee, D. H. Lee, and Y. H. Bae. 2006. Biodegradable temperature-sensitive nanoparticles from poly(ethylene glycol) (PEG)/poly(L-lactic acid) (PLLA) alternating multiblock copolymer for anticancer drug delivery. Eur. J. Pharm. Sci. 27: 115-122 https://doi.org/10.1016/j.ejps.2005.08.012
  17. Na, K., K. H. Lee, and Y. H. Bae. 2004. pH-Sensitivity and pH-dependent interior structure change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo(methacryloyl sulfadimethoxine) (PA/OSDM) conjugates. J. Control. Release 97:513-525 https://doi.org/10.1016/S0168-3659(04)00184-1
  18. Na, K, K. H. Park, S. W. Kim, and Y. H. Bae. 2000. Self-aggregated hydrogel nanoparticles from curdlan derivatives: Characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J. Control. Release 69: 225-236 https://doi.org/10.1016/S0168-3659(00)00256-X
  19. Na, K., T. B. Lee, K.-H. Park, E.-K. Shin, and H.-K. Choi. 2003. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur. J. Pharm. Sci. 18: 165-173 https://doi.org/10.1016/S0928-0987(02)00257-9
  20. Na, K. and Y. H. Bae. 2002. Self-assembled hydrogel nanoparticles responsive to tumor extracelluar pH from hydrophobized pullulan and sulfonamide conjugate; Characterization, aggregation and adriamycin release in vitro. Pharm. Res. 19: 681-688 https://doi.org/10.1023/A:1015370532543
  21. Nishikawa, T., K. Akiyoshi, and J. Sunamoto. 1996. Macromolecular complexation between bovine serum albumin and self-aggregated hydrogel nanoparticle of hydrophobized polysaccharide. J. Am. Chem. Soc. 118: 6110-6115 https://doi.org/10.1021/ja953843c
  22. Sakahara, H. and T. Saga. 1999. Avidin-biotin system for delivery of diagnostic agents. Adv. Drug Deliv. Rev. 37: 89-101 https://doi.org/10.1016/S0169-409X(98)00101-X
  23. Seo, M. H., J.-H. Lee, M. S. Kim, H. K. Chae, and H. Myung. 2006. Selection and characterization of peptides specifically binding to $TiO_2$ nanoparticles. J. Microbiol. Biotechnol. 16: 303-307
  24. Shon, Y.-H., K.-S. Nam, and M.-K. Kim. 2004. Cancer chemopreventive potential of Scenedesmus spp. cultured in medium containing bioreacted swine urine. J. Microbiol. Biotechnol. 14: 158-161
  25. Wang, S. and P. S. Low. 1998. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release 53: 39-48 https://doi.org/10.1016/S0168-3659(97)00236-8
  26. Yasugi, K., Y. Nagasaki, M. Kato, and K. Kataoka. 1999. Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(d,l-lactide) block copolymers as potential drug carrier. J. Control. Release 62: 89-100 https://doi.org/10.1016/S0168-3659(99)00028-0
  27. Yokoyama, M. 1988. In T. Okano (ed.). Biorelated Polymers and Gels: Novel Passive Targeting Drug Delivery with Polymeric Micelles, pp. 193-229. Academic Press, Tokyo
  28. Yokoyama, M. and T. Okano. 1996. Targetable drug carriers: Present status and a future perspective. Adv. Drug Deliv. Rev. 21: 77-80 https://doi.org/10.1016/S0169-409X(96)00439-5